Multimedia search results
23 Results for ''
-
Video/AnimationDoriNano – Improved DNA Origami Nanodelivery to Fight Cancer and Other DiseasesWe’re developing DNA Origami nanodelivery, which is transforming nanoparticle industry. Developed at the Dana Farber Cancer Institute and the Wyss Institute at Harvard University, this innovative approach overcomes the challenges of other nanoparticles, offering stability, high drug loading capacity, nano-scale control of cargo spacing, and more – making it a highly customizable solution for delivering...
-
Video/AnimationDeep-dive Molecular Blueprinting of Therapeutic Nanostructures | Anastasia ErshovaAnastasia Ershova, a scientist at the Wyss, introduces the innovative field of bionanotechnology. In this talk from LabWeek Field Building, she explores how this cutting-edge science is revolutionizing therapeutics and diagnostics by building molecules that interact with the body in novel ways. Ershova discusses DNA nanotechnology, where DNA is used as a material to create...
-
Audio/PodcastMaking Sugar Healthier – DDN DialoguesWith some out-of-the-box engineering, researchers have developed a nature-inspired strategy to turn sugar in packaged foods into gut-healthy fiber. This podcast features Director of Business Development, Sam Inverso, Ph.D., and Senior Engineer Adama Sesay, Ph.D., along with Judith Moca and John Topinka from Kraft-Heinz. This episode was created and is owned by Drug Discovery News,...
-
Video/Animation2021 Kabiller Prize in Nanoscience and NanomedicineDavid R. Walt, a Wyss Core Faculty member, member of the faculty at Harvard Medical School in the Department of Pathology, and a Howard Hughes Medical Institute Professor, is the winner of the 2021 Kabiller Prize in Nanoscience and Nanomedicine, the world’s largest monetary award for outstanding achievement in the field of nanotechnology and its...
-
Video/AnimationDNA Nanoswitch CalipersThe world’s tiniest ruler for biomolecules has been created by researchers at the Wyss Institute at Harvard University, Harvard Medical School, and Boston Children’s Hospital. DNA Nanoswitch Calipers can measure very small peptides to better understand their structure and function, and enable them to be quickly identified in mixed samples. These insights could lead to...
-
Video/AnimationLiving MaterialsCan we create a world of living materials that have the characteristics of biological systems: self-replication, self-regulation, self-healing, environmental responsiveness and self-sustainability? Engineered Living Materials (ELMs) are defined as engineered materials composed of living cells that form or assemble the material itself or modulate the functional performance of the material in some manner. The proposed Big...
-
Video/AnimationCatalytic Nanoarchitectures for Clean AirThe Wyss Institute is developing a new type of coating for catalytic converters that, inspired by the nanoscale structure of a butterfly’s wing, can dramatically reduce the cost and improve the performance of air purification technologies, making them more accessible to all. Credit: Wyss Institute at Harvard University
-
Exchange-PAINT: Neurons Up Close and PersonalDNA Exchange Imaging of fixed mouse hippocampal neurons stained sequentially with antibodies recognizing neuronal markers Synapsin I, vGAT, MAP2, pNFH, α-tubulin, acetyl-tubulin, GFAP and nuclear marker DAPI. Credit: Wyss Institute at Harvard University
-
Video/AnimationWhat Is BIOMOD?BIOMOD is a biomolecular design competition for students created by the Wyss Institute for Biologically Inspired Engineering at Harvard University. Each year BIOMOD holds a Jamboree, an annual conference at which all BIOMOD teams convene to present their work from the summer. This year’s Jamboree will take place in Genentech Hall at UCSF in San Francisco,...
-
Video/AnimationFouling Marine FoulingMarine fouling occurs when organisms attach themselves to underwater objects like boats, rope, pipes and building structures. Mussels are one of the biggest culprits. Once attached, they are difficult to remove, leading to operational downtime, increased energy use and damage. Paints and coatings are currently used to prevent marine fouling, but are frequently toxin-based and not...
-
Audio/PodcastWilliam Shih: Lego-Style Construction of Future Therapeutics From DNAListen to Wyss Core Faculty member William Shih’s lecture on how custom molecular shapes can be designed using DNA building blocks and how these minuscule devices could have a profound impact on fields ranging from molecular biophysics to therapeutics to nano-optics for decades to come. Shih’s lecture is part of the ArtScience lecture series at...
-
Audio/PodcastDisruptive: Molecular RoboticsHow can DNA be programmed to build novel structures, devices, and robots? We have taken our understanding of DNA to another level, beginning to take advantage of some of DNA’s properties that have served nature so well, but in ways nature itself may have never pursued. Humans can now use DNA as a medium for...
-
Video/AnimationBioinspired Approach to Sepsis TherapyWyss Institute Founding Director Don Ingber, Senior Staff Scientist Michael Super and Technology Development Fellow Joo Kang explain how they engineered the Mannose-binding lectin (MBL) protein to bind to a wide range of sepsis-causing pathogens and then safely remove the pathogens from the bloodstream using a novel microfluidic spleen-like device. Credit: Wyss Institute at Harvard...
-
Video/AnimationVirus-inspired DNA NanodevicesWyss Institute Core Faculty member William Shih and Technology Development Fellow Steven Perrault explain why DNA nanodevices need protection inside the body, and how a viral-inspired strategy helps protect them. Credit: Wyss Institute at Harvard University
-
Video/AnimationDNA CagesTo create supersharp images of their cage-shaped DNA polyhedra, the scientists used DNA-PAINT, a microscopy method that uses short strands of DNA (yellow) labeled with a fluorescent chemical (green) to bind and release partner strands on polyhedra corners, causing them to blink. The blinking corners reveal the shape of structures far too small to be...
-
Video/AnimationFluorescent in situ SequencingIn this video, George Church, Ph.D., a Core Faculty member at the Wyss Institute and Professor of Genetics at Harvard Medical School, explains how fluorescent in situ sequencing could lead to new diagnostics that spot the earliest signs of disease, and how it could help reveal how neurons in the brain connect and function. Credit:...
-
Video/AnimationBuilding 3D Structures with DNA BricksThe nanofabrication technique, called ‘DNA-brick self-assembly,’ uses short, synthetic strands of DNA that work like interlocking Lego bricks. It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying ‘recipe’ of DNA base pairs. This animation accurately shows how the DNA strands self assemble to build a structure.DNA Nanostructures...
-
Video/AnimationNanoRx: Clot-Busting NanotherapeuticIn this animation, learn how the Wyss Institute clot-busting nanotherapeutic is activated by fluid high shear force – which occurs where blood flows through vessels narrowed by obstruction – to specifically target clots and dissolve them away. By pairing this drug with an intra-arterial device that restores blood flow to complete obstructions, the drug-device combination...
-
Video/AnimationDNA Bricks: Molecular AnimationThe nanofabrication technique, called ‘DNA-brick self-assembly,’ uses short, synthetic strands of DNA that work like interlocking Lego bricks. It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying “recipe” of DNA base pairs. Animation created by Digizyme for the Wyss Institute. Credit: Wyss Institute at Harvard University
-
Video/AnimationClot-busting nanotherapeuticWyss Core Faculty member Donald E. Ingber describes the clot-busting nanotherapeutic. Credit: Wyss Institute at Harvard University
-
Video/AnimationMaking Structures with DNA “Building Blocks”Researchers at the Wyss Institute have developed a method for building complex nanostructures out of short synthetic strands of DNA. Called single-stranded tiles (SSTs), these interlocking DNA “building blocks,” akin to Legos, can be programmed to assemble themselves into precisely designed shapes, such as letters and emoticons. Credit: Wyss Institute at Harvard University
-
Video/AnimationDNA Nanorobot: Cell-Targeted, Payload-DeliveringThis video describes a cell-targeted, payload-delivering DNA nanorobot developed at the Wyss Institute that can trigger targeted therapeutic responses. This novel technology could potentially seek out cancer cells and cause them to self-destruct. Credit: Wyss Institute at Harvard University
-
Video/AnimationIntroduction to Programmable NanoroboticsWhat if we could build programmable nanorobots to attack disease? Credit: Wyss Institute at Harvard University