Search results
36 Results for 'Protein Engineering'
- Technologies (7)
- Collaborations (0)
- Team (0)
- News (20)
- Pages (0)
- Multimedia (8)
- Publications (0)
- Jobs (0)
- Events (1)
Technologies 7
-
Pancreatitis Tx: An Engineered Protein Treatment for Pancreatitis
First disease-modifying therapy that can be systemically applied to safely and effectively treat patients with different forms of pancreatitis. -
FeCILL: Targeted Treatment for Severe Fungal Infections
FeCILL is novel delivery vehicle for antifungal drugs that targets them right to the infection site and reduces harmful side effects in patients with severe fungal infections. -
FcMBL: Broad-Spectrum Pathogen Capture for Infectious Disease Diagnosis and Therapy
The Problem Infectious diseases have plagued humanity for millennia, and the pathogens that infect and sicken humans are constantly evolving. Severe infections can cause sepsis, a life-threatening condition in which a patient’s immune system overreacts to the infection. The body starts to attack itself, which can lead to tissue damage, organ failure, and death. Sepsis... -
DNA Data Storage
The genetic material DNA has garnered considerable interest as a medium for digital information storage because its density and durability are superior to those of existing silicon-based storage media. For example, DNA is at least 1000-fold more dense than the most compact solid-state hard drive and at least 300-fold more durable than the most stable... -
Synthetic AAV Capsids for Advanced Gene Therapy
The protein shell (capsid) of Adeno-associated viruses (AAV) are presently the most promising delivery vehicles for various in vivo gene therapies. AAVs are non-pathogenic and, through past engineering efforts, have become safe due to their inability to integrate into and damage the genome of target cells. Rather, the delivered DNA containing a therapeutic gene of... -
RAPID: Testing for Food Contaminants
Contamination of food by microorganisms such as certain bacteria, viruses and fungi is a constant concern, with even miniscule amounts of certain species posing a risk for foods to become unsafe and spoiled during storage. Current safety and quality tests are often not sensitive enough to detect rare species, and because they first require the...
News 20
Multimedia 8
-
Video/AnimationFeCILL: Reimagining How We Treat the Sickest PatientsOpportunistic fungal infections usually only affect patients whose immune systems are compromised, but when they do, they are often deadly – the mortality rate for these infections can be as high as 25%. Existing antifungal treatments have high levels of toxicity, and can harm the patient more than they help. Researchers at the Wyss Institute...
-
Video/AnimationReimagining Protein Engineering Inspired by His Father: Mike SuperMike Super is a Lead Staff Scientist using protein engineering to design therapeutic and diagnostic devices to treat cancer, and infectious and immunological diseases. He also leads the Biostasis team at the Wyss. In this video, he shares his personal and professional journey that began in the deserts of Namibia shadowing his father, one of...
-
Video/AnimationAAV Capsid EngineeringWyss researchers have created a high-throughput platform to generate an Adeno-associated virus 2 (AAV2) library containing 200,000 variants, each carrying a distinct mutation in the virus capsid protein. Their analysis identified capsid changes that enhanced “homing” potential to specific organs in mice and virus viability, as well as a new protein hidden in the capsid-encoding...
-
Audio/PodcastProtein Engineering: Editing FunctionalityProtein Engineering: Editing Functionality was originally broadcast on Think Research, a podcast by Harvard University, on April 19, 2018. In this story, Wyss Lead Senior Staff Scientist Michael Super, Ph.D. shares his story of how the spread of infectious disease throughout South Africa and London inspired him to pursue human health and combat disease. The...
-
Video/AnimationPathogen-Extracting Sepsis TherapyThis video explains how sepsis induced by an overload of blood pathogens can be treated with the Wyss Institute’s improved pathogen-extracting, spleen-mimicking device. Blood is flown through a cartridge filled with hollow fibers that are coated with a genetically engineered blood protein inspired by a naturally-occurring human molecule called Mannose Binding Lectin (MBL). MBL is...
-
Video/AnimationDesigning Fusion-Protein TherapiesIn this video, watch the new computational model in action as it simulates the behavior of a fusion-protein drug molecule after the targeting protein has attached to a cell. Developed by Wyss researchers, this model helps design more effective biologic drugs while eliminating drug candidates that are prone to causing side effects. Credit: Harvard’s Wyss...