Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired Therapeutics & DiagnosticsTherapeutic discovery and diagnostics development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Computational Design & DiscoveryCombining predictive bioanalytics and machine learning with physical and mathematical modeling and simulation
- Diagnostics AcceleratorDeveloping new diagnostic technologies that solve important healthcare challenges through collaboration at the Wyss Institute with clinicians and industry partners
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Aging
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Anti-aging
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
0 Results for No Current Selection
-
Video/AnimationSeed-dependent crisscross DNA-origami slatsThis animation explains how the newly invented crisscross origami method can be used to build functionalized micron-scale DNA megastructures composed of many unique DNA origami “slats,” each with their own complexity and interactive properties. Credit: Wyss Institute at Harvard University
-
Video/AnimationWyss Institute – 14 Years of ImpactIn honor of Hansjörg Wyss’ fourth transformational gift to Harvard’s Wyss Institute, this tribute video looks at the impact that the Institute has had over the past 14 years in publications, patent filings, new licenses, new startups, venture capital funding raised, and jobs created. Additionally, it explores the exciting new technologies that the Institute is...
-
Video/AnimationReimagining Recovery and Pain Management After Her Injury: Megan SperryMegan Sperry is a Postdoctoral Fellow working on the Biostasis project to help develop therapeutics that could slow down biological time. In this video, she shares a personal story about an injury she suffered after years of figure skating and how she would Reimagine the World with better recovery outcomes and pain management after trauma....
-
Video/AnimationThe Vagina Chip: A New Preclinical Model for Research on Vaginal Epithelium Microbiome InteractionsThe Vagina Chip allows researchers to study a human model of the vaginal microbiome and develop new treatments for bacterial vaginosis and other conditions that threaten women’s health. Credit: Research Square
-
Video/AnimationAcademic Entrepreneurship w/ Bob Langer & George Church – BIOS Roundtable #4George Church is a Core Faculty member at the Wyss Institute and a Professor at Harvard University. George leads Synthetic Biology at the Wyss Institute, where he oversees the directed evolution of molecules, polymers, and whole genomes to create new tools with applications in regenerative medicine and bio-production of chemicals. Among his recent work at...
-
Video/AnimationReimagining Diagnostics for His Mom: Pawan JollyPawan Jolly is a Senior Staff Scientist leading the Sensors team to help develop better diagnostics for various illnesses and allergies. He also serves as the technology lead for the Wyss Diagnostics Accelerator. In this video, he shares a heartfelt personal story about his mom who suffers from severe allergies and how he would Reimagine...
-
Video/AnimationLight-Seq: Light-Directed In Situ Barcoding of BiomoleculesThis animation explains how the Light-Seq technology works to barcode and deep-sequence selected cell populations in tissue samples, and how the team applied it to the analysis of distinct and rare cells in the mouse retina. Credit: Wyss Institute at Harvard University.
-
Audio/PodcastIlluminating Biological Context with Josie Kishi – Translation by Fifty YearsTechnologies like next-generation sequencing allow us to understand which RNA transcripts and proteins are expressed in biological tissues. However, it’s often equally important to understand how cells or molecules are positioned relative to one another! Whether it be a cell changing its shape, an organelle ramping up a metabolic process, or a DNA molecule traveling...
-
Video/AnimationReimagining Neurodegenerative Disease Treatment for Her Grandfather: Mariana Garcia-CorralMariana Garcia-Corral is a Research Assistant studying brain organoids to help with the treatment of bipolar disorder. In this video, she shares a poignant personal story about her grandfather suffering from Lewy body dementia and how she would Reimagine a World with better neurodegenerative disease treatment. Credit: Wyss Institute at Harvard University
-
Video/AnimationDoriVac: Square Block DNA Origami VaccineThis animation explains how DoriVac leverages DNA origami nanotechnology and immune activators to stimulate stronger and long-lasting immune responses against cancer and potentially infectious diseases. Credit: Wyss Institute at Harvard University
-
Video/AnimationReimagine the World: Volume 1Four Wyss Institute scientists, Mariana Garcia-Corral, Pawan Jolly, Megan Sperry, and Mike Super, share how they would Reimagine the World and the personal stories that fuel their passion for the work they are doing. We’d love to hear how you would Reimagine the World! Please visit the following link to share your ideas: https://wyss.typeform.com/to/o9xM7cG1 Credit:...
-
Video/AnimationEliminating brain cancer at its source | Natalie Artzi | TEDxMITGlioblastoma is a lethal, aggressive brain cancer with a dismal median overall survival rate of 15 months, a number that has remained unchanged for decades. Treatment for this devastating disease involves surgical resection followed by chemotherapy and radiation therapy; however, tumor recurrence is inevitable as it is impossible to eliminate all tumor cells with current...