Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired Therapeutics & DiagnosticsTherapeutic discovery and diagnostics development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Computational Design & DiscoveryCombining predictive bioanalytics and machine learning with physical and mathematical modeling and simulation
- Diagnostics AcceleratorDeveloping new diagnostic technologies that solve important healthcare challenges through collaboration at the Wyss Institute with clinicians and industry partners
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Aging
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Anti-aging
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
0 Results for No Current Selection
-
Video/AnimationReimagine the World – Volume 2 – Diagnostics AcceleratorTwo clinicians collaborating with the Wyss Diagnostics Accelerator (DxA), Lise Johnson and Craig Hersh, as well as two members of the Wyss DxA Industrial Partnership Program, Nell Meosky Luo and Andy Levin, share how they would Reimagine the World and the personal stories that fuel their passion for the work they are doing. Credit: Wyss...
-
Video/AnimationWyss Diagnostics Accelerator – The Industrial Participant ProgramThe Industrial Participant Program (IPP) is a collaboration hub between healthcare testing companies and the scientific and clinical community within the Wyss ecosystem, driven by the Wyss Diagnostics Accelerator (DxA). Members of the IPP share the common goal of fast-tracking diagnostic technologies to meet unmet, critical needs. Credit: Wyss Institute at Harvard University
-
Audio/PodcastReimagining Infertility – An Interview with Christian KrammeChristian Kramme imagines a world where all people can have a child on their own time frame. Such “reproductive autonomy” is not the case today – infertility is a growing problem worldwide, and existing treatments like IVF are incredibly taxing on women’s bodies and too expensive for most of the global population to access. Listen...
-
Video/AnimationFeCILL: Reimagining How We Treat the Sickest PatientsOpportunistic fungal infections usually only affect patients whose immune systems are compromised, but when they do, they are often deadly – the mortality rate for these infections can be as high as 25%. Existing antifungal treatments have high levels of toxicity, and can harm the patient more than they help. Researchers at the Wyss Institute...
-
Video/AnimationInnovation Institutes w/ Don Ingber, David Baker, Brad Ringeisen, & Patrick Hsu – BIOS Roundtable #6Don Ingber – Founding Director at the Wyss Institute & Professor at Harvard Brad Ringeisen – Executive Director at Innovative Genomics Institute David Baker – Professor at UW & Director at Institute for Protein Design Patrick Hsu – Assistant Professor at UC Berkeley & Co-Founder at Arc Institute As the number of breakthrough biomedical discoveries...
-
Video/AnimationMetabolic T cell Labeling: simple and effective enhancement of therapeutic T cells with immune-stimulating cytokinesThis animation shows how the surface of patient-derived T cells is metabolically labeled with azido-sugar molecules that then can be used to attach immune-enhancing cytokines with the help of click chemistry. The approach could help expand adoptive T cell therapies to treatment of solid tumors. Credit: Wyss Institute at Harvard University
-
Video/AnimationReimagining Health Equity: Wyss Diagnostics AcceleratorWith the Wyss Diagnostics Accelerator (DxA), we’re reimagining health equity by accelerating the development and deployment of needed diagnostics in all settings, particularly in low-resource settings, by fostering deep collaborations driven by unmet needs. Credit: Wyss Institute at Harvard University
-
Video/AnimationReimagining Protein Engineering Inspired by His Father: Mike SuperMike Super is a Lead Staff Scientist using protein engineering to design therapeutic and diagnostic devices to treat cancer, and infectious and immunological diseases. He also leads the Biostasis team at the Wyss. In this video, he shares his personal and professional journey that began in the deserts of Namibia shadowing his father, one of...
-
Video/AnimationDefine Your Own Path | Angelika Fretzen on Her StoryIn this episode of Her Story, Sandra Fenwick, Former CEO of Boston Children’s Hospital, speaks with Dr. Angelika Fretzen, Ph.D., M.B.A., Director and COO of Wyss Institute’s Technology Translation, about her experience of being a woman in STEM and how she encourages younger generations to join the STEM community. Angelika Fretzen, Ph.D., M.B.A. is the...
-
Video/AnimationSeed-dependent crisscross DNA-origami slatsThis animation explains how the newly invented crisscross origami method can be used to build functionalized micron-scale DNA megastructures composed of many unique DNA origami “slats,” each with their own complexity and interactive properties. Credit: Wyss Institute at Harvard University
-
Video/AnimationWyss Institute – 14 Years of ImpactIn honor of Hansjörg Wyss’ fourth transformational gift to Harvard’s Wyss Institute, this tribute video looks at the impact that the Institute has had over the past 14 years in publications, patent filings, new licenses, new startups, venture capital funding raised, and jobs created. Additionally, it explores the exciting new technologies that the Institute is...
-
Video/AnimationReimagining Recovery and Pain Management After Her Injury: Megan SperryMegan Sperry is a Postdoctoral Fellow working on the Biostasis project to help develop therapeutics that could slow down biological time. In this video, she shares a personal story about an injury she suffered after years of figure skating and how she would Reimagine the World with better recovery outcomes and pain management after trauma....