Technologies search results
14 Results for ''
-
Passive Directional Valve Technology: Towards More User-friendly and Accessible Microfluidic Devices for Diagnostic and Research Applications
Passive directional valves enable smaller and more complex microfluidics applications across of broad spectrum of future technologies, including diagnostics, drug development, and tissue engineering. -
Manufacturing Mini Surgical Robots
Project 1985 is commercializing the Wyss Institute’s Pop-Up MEMS technology to quickly and cheaply develop tiny robotic tools for minimally invasive surgery. -
Microrobotic Laser-Steering Medical Device for Minimally Invasive Surgery
Endoscopy has proven extremely useful in many areas of medicine because it can be carried out with relatively few risks in a short time, and be used to diagnose and treat numerous diseases. In gastroenterology, endoscopies of the upper gastrointestinal tract (esophagus, stomach, first part of the small intestine; upper GI endoscopies) and lower gastrointestinal... -
Low-Cost Tactile Displays for the Blind and Visually Impaired
Age-related medical conditions are responsible for most cases of blindness and visual impairment worldwide. In 2015, there were an estimated 36 million blind people in the world, with an additional 217 million suffering from moderate to severe vision impairment. Over 80% of the visually impaired were older than 50, and this percentage is expected to... -
milliDelta: Millimeter-Scale Delta Robot
Delta robots are deployed in many industrial processes, including pick-and-place assemblies, machining, welding, and food packaging. Three individually controlled lightweight arms enable fast and accurate motion of an output platform in three directions. Roboticists have reduced the size of Delta robots for tasks in limited workspaces, but so far, using conventional manufacturing techniques and components,... -
HAMR: Versatile Crawling Microrobot
Small or difficult-to-access spaces such as areas covered with rubble, or narrow pipes and engines can pose obstacles to search-and-rescue missions, repair works, or environmental and industrial monitoring. One solution for these problems could be small-sized robots that are able to navigate such spaces, transport payload, sense, and communicate. Wyss Institute researchers have developed a... -
Dynamic Daylight Control System
In the U.S. alone, commercial and residential buildings account for more than 40 percent of the total energy consumption – mostly for lighting. What’s more, the deep building layouts that are typical in the U.S. have led to a complete reliance on artificial lighting systems that are less desirable than natural daylight. Many of the... -
Liquid-Gated Membranes for Filtration
Just like pores in living organisms that control the absorption and excretion of fluids, gases and solids in response to their environments, flow-gating membranes have proved very useful for many mechanical systems, such as gas and liquid separators, dialysis machines, or open heart bypass pumps. But conventional approaches to create synthetic “gated pores” within those... -
Pop-Up MEMS: Origami-Inspired Micromanufacturing
Recent decades have seen rapid development in the manufacture of microelectromechanical systems (MEMS) at the micrometer scale, mostly based on silicon wafer processing techniques, with characteristic length scales of millimeters to nanometers. However, standard MEMS techniques are often inappropriate for producing machines with complex 3D topologies and varied constituent materials at the mesoscale, at sizes... -
4D Printing of Shapeshifting Devices
Organisms, such as flowers and plants, have tissue compositions and microstructures creating dynamic morphologies that can shapeshift in response to changes in their environments. Researchers at the Wyss Institute have mimicked a variety of such dynamic shape changes like those performed by tendrils, leaves, and flowers in response to changes in humidity or temperature with... -
3D Bioprinting of Living Tissues
The Problem There is a severe shortage of human organs for people who need transplants due to injury or disease: more than 103,000 people are on the waiting list for organs in the US, and it’s estimated that 17 people die waiting for an organ transplant every day. Growing full organs from living human... -
Omniphobic material that empowers a new category of medical devices
Cerulean Scientific is using our thin layer perfluorocarbon technology to develop medical devices that resist clotting, obstruction and infection, reducing patient suffering and lowering healthcare costs for the 10% of the population treated with an implantable medical device. -
SLIPS: Slippery Liquid-Infused Porous Surfaces
The need for an inexpensive, super-repellent surface cuts across a vast swath of societal sectors—from refrigeration and architecture, to medical devices and consumer products. Most state-of-the-art liquid repellent surfaces designed in the last decade are modeled after lotus leaves, which are extremely hydrophobic due to their rough, waxy surface and the physics of their natural... -
Human Organs-on-Chips
Organ Chips are microfluidic devices lined with living human cells for drug development, disease modeling, and personalized medicine. Launched in 2014, Wyss startup Emulate, Inc., is leveraging the Wyss Institute’s Organ Chip technology to mimic human organs in vitro, enabling faster, better, and cheaper drug development and insights into human health.