Multimedia search results
26 Results for ''
-
Video/AnimationWhat is the future of Engineering with Bioengineering Pioneer Donald E Ingber – Museum of ScienceIs biological inspiration the key to the future of engineering? Bioethicist Insoo Hyun sits down with Donald E. Ingber, Founding Director of the Wyss Institute for Biologically Inspired Engineering and Professor of Bioengineering at Harvard’s School of Engineering & Applied Sciences. Together they explore the profound impact of Nature on engineering beyond the realms of...
-
Video/AnimationSeed-dependent crisscross DNA-origami slatsThis animation explains how the newly invented crisscross origami method can be used to build functionalized micron-scale DNA megastructures composed of many unique DNA origami “slats,” each with their own complexity and interactive properties. Credit: Wyss Institute at Harvard University
-
Video/AnimationSelf-regenerating bacterial hydrogels as intestinal wound patchesThis animation explains how self-regenerating bacterial hydrogels could be used as adhesive patches to help intestinal wounds heal. Credit: Wyss Institute at Harvard University.
-
Video/AnimationMORPH: A new soft material microfabrication processWhat has the ability to move and show its colors, is made only of silicone rubber and manufactured at the millimeter scale? A soft robotic peacock spider. Researchers have combined three different manufacturing techniques to create a novel origami-inspired soft material microfabrication process that goes beyond what existing approaches can achieve at this small scale....
-
Audio/PodcastDisruptive: Art Advances ScienceIn this episode of Disruptive, Wyss Institute Founding Director Don Ingber and Staff Scientist Charles Reilly discuss their process creating The Beginning, a short film inspired by Star Wars, to better communicate science to the public…and how they made a scientific discovery along the way. To make The Beginning, film industry visual effects and animation...
-
Video/AnimationPrimer Exchange ReactionIn this video, Jocelyn Kishi illustrates how Primer Exchange Reaction (PER) cascades work to autonomously create programmable long single-stranded DNA molecules. Credit: Wyss Institute at Harvard University.
-
Audio/PodcastDisruptive: Cancer Vaccine and Immuno-MaterialsImmunotherapy – treatment that uses the body’s own immune system to help fight disease – has groundbreaking and life-saving implications. In an effort to make immunotherapy more effective, Wyss Institute researchers are developing new immuno-materials, which help modulate immune cells to treat or diagnose disease. In this episode of Disruptive, Dave Mooney, Wyss Core Faculty...
-
Video/AnimationWyss Focus: Immuno-MaterialsWyss Core Faculty, Dave Mooney, explains our new Immuno-Materials Focus Area, which adds a new dimension to immunotherapy in that it harnesses materials to make treatments more efficient and effective. These material-based systems are capable of modulating immune cells and releasing them into the body where they can treat diseases.
-
Audio/PodcastWilliam Shih: Lego-Style Construction of Future Therapeutics From DNAListen to Wyss Core Faculty member William Shih’s lecture on how custom molecular shapes can be designed using DNA building blocks and how these minuscule devices could have a profound impact on fields ranging from molecular biophysics to therapeutics to nano-optics for decades to come. Shih’s lecture is part of the ArtScience lecture series at...
-
Audio/PodcastDisruptive: Putting Biofilms to WorkBiofilms are commonly known as the slime-producing bacterial communities sitting on stones in streams, dirty pipes and drains, or dental plaque. However, Wyss Core Faculty member Neel Joshi is putting to work the very properties that make biofilms effective nuisances or threats in our daily lives. In this episode of Disruptive, Joshi and postdoctoral fellow...
-
Audio/PodcastDisruptive: Molecular RoboticsHow can DNA be programmed to build novel structures, devices, and robots? We have taken our understanding of DNA to another level, beginning to take advantage of some of DNA’s properties that have served nature so well, but in ways nature itself may have never pursued. Humans can now use DNA as a medium for...
-
Video/Animation4D Printing: Shapeshifting ArchitecturesA team at the Wyss Institute and Harvard SEAS has developed a new microscale printing method to create transformable objects. These “4D-printed” objects go a step beyond 3D printing to incorporate a fourth dimension: time. The method was inspired by the way plants change shape over time in response to environmental stimuli. This orchid-shaped structure...
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 1)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 3)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 2)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Video/AnimationBIND BiofilmIn this video Wyss Institute Core Faculty member Neel Joshi and Postdoctoral Fellow Peter Nguyen describe how their protein engineering system called BIND (Biofilm-Integrated Nanofiber Display) could be used to redefine biofilms as large-scale production platforms for biomaterials that can be programmed to provide functions not possible with existing materials. An animation depicts how it...
-
Video/AnimationKilobots: A Thousand-Robot SwarmIn this video, Kilobots self-assemble in a thousand-robot swarm. The algorithm developed by Wyss Institute Core Faculty member Radhika Nagpal that enables the swarm provides a valuable platform for testing future collective Artificial Intelligence (AI) algorithms. Credit: Harvard School of Engineering and Applied Sciences.
-
Video/AnimationSelf-Folding RobotsIn this video, Wyss Institute Core Faculty member Rob Wood, who is also the Charles River Professor of Engineering and Applied Sciences at Harvard’s School of Engineering and Applied Sciences (SEAS), and SEAS Ph.D. student Sam Felton discuss their landmark achievement in robotics – getting a robot to assemble itself and walk away autonomously –...
-
Video/AnimationDNA CagesTo create supersharp images of their cage-shaped DNA polyhedra, the scientists used DNA-PAINT, a microscopy method that uses short strands of DNA (yellow) labeled with a fluorescent chemical (green) to bind and release partner strands on polyhedra corners, causing them to blink. The blinking corners reveal the shape of structures far too small to be...
-
Video/AnimationShrinking GelWhen the temperature rises to just below body temperature, this biocompatible gel shrinks dramatically within minutes, bringing tooth-precursor cells (green) closer together. Credit: Basma Hashmi
-
Video/AnimationTERMESInspired by termites, the TERMES robots act independently but collectively. They can carry bricks, build staircases, and then climb them to add bricks to a structure. Credit: Wyss Institute at Harvard University
-
Video/AnimationBuilding 3D Structures with DNA BricksThe nanofabrication technique, called ‘DNA-brick self-assembly,’ uses short, synthetic strands of DNA that work like interlocking Lego bricks. It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying ‘recipe’ of DNA base pairs. This animation accurately shows how the DNA strands self assemble to build a structure.DNA Nanostructures...
-
Audio/PodcastRobotics Lessons from TermitesJustin Werfel, Wyss Institute Research Scientist, shared his story for The Story Collider in a live storytelling event with the theme ‘The Science I Never Expected’ in June 2013. Justin Werfel received his PhD at MIT and did postdoctoral work at Harvard and the New England Complex Systems Institute. He works on topics including swarm...
-
Video/AnimationDNA Bricks: Molecular AnimationThe nanofabrication technique, called ‘DNA-brick self-assembly,’ uses short, synthetic strands of DNA that work like interlocking Lego bricks. It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying “recipe” of DNA base pairs. Animation created by Digizyme for the Wyss Institute. Credit: Wyss Institute at Harvard University
-
Video/AnimationMaking Structures with DNA “Building Blocks”Researchers at the Wyss Institute have developed a method for building complex nanostructures out of short synthetic strands of DNA. Called single-stranded tiles (SSTs), these interlocking DNA “building blocks,” akin to Legos, can be programmed to assemble themselves into precisely designed shapes, such as letters and emoticons. Credit: Wyss Institute at Harvard University
-
Video/AnimationTermite-inspired robotsInspired by termites and their building activities, the TERMES project is working toward developing a swarm construction system in which robots cooperate to build 3D structures much larger than themselves. The current system consists of simple but autonomous mobile robots and specialized passive blocks; the robot is able to manipulate blocks to build tall structures,...