Search results
236 Results for 'Cell Biology'
- Technologies (13)
- Team (0)
- News (173)
- Events (0)
- Multimedia (50)
- Publications (0)
- Jobs (0)
Technologies 13
-
Bone Marrow-Like Scaffolds for Accelerating Immune Reconstitution
Bone marrow transplants containing hematopoietic stem cells from an immune-compatible (“allogeneic”) donor can cure patients with otherwise fatal blood disorders including multiple myeloma and leukemias by reconstituting their entire immune systems after chemotherapy. However, following such a “hematopoietic stem cell transplantation” (HSCT), the restoration of T cell immunity – which depends on the production of... -
Single-Cell Encapsulation for Improved Cell Therapies
Mesenchymal stromal cells (MSCs) are valued for their ability to secrete compounds that modulate the body’s immune system, making them an attractive solution for existing problems with cell therapies including host-vs-graft disease and organ transplant rejections. However, MSCs are rapidly cleared from the body and can come under fire from the immune system. Efforts to... -
Brain Targeting Program: Shuttles for Brain Delivery of Therapeutics and Diagnostics
In its Brain Targeting Program, a Wyss team led by Founding Director Donald Ingber, M.D., Ph.D. and Staff Program Lead James Gorman, M.D., Ph.D. is developing improved approaches to target drugs and diagnostics to the brain. Leveraging the human blood-brain barrier (BBB) Chip technology developed by Ingber’s team, combined with advanced antibody R&D capabilities, the... -
Biomaterial Scaffolds for T Cell Expansion
Immunotherapy, or tweaking the body’s own immune system to treat disease, is attracting significant attention in the medical field for its potential to offer long-lasting cures with fewer side effects than chemotherapy or other drugs. One type of immunotherapy involves isolating T cells (a type of white blood cell) from a patient’s body, sometimes modifying... -
Human Organs-on-Chips
Clinical studies take years to complete and testing a single compound can cost more than $2 billion. Meanwhile, innumerable animal lives are lost, and the process often fails to predict human responses because traditional animal models often do not accurately mimic human pathophysiology. For these reasons, there is a broad need for alternative ways to... -
T Cell Traps
T cells, a subtype of white blood cells, play key roles in cell-mediated immunity, be it to fight infections and cancer or, when corrupted, to react against the body’s own cells in more than 80 autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and others. However, isolating disease-related T cells from the body...
News 173
Multimedia 50
-
Video/AnimationBeating Back the Coronavirus: FDA-Approved Drug Repurposing PipelineWith the goal of rapidly repurposing FDA-approved drugs to treat COVID-19, the Wyss Institute is collaborating with the Frieman Lab at the University of Maryland Medical School and the tenOever Lab at the Icahn School of Medicine at Mount Sinai to establish a multidisciplinary pipeline that can rapidly predict, test, and validate potential treatments. Credit:...
-
Video/AnimationInterrogator: Human Organ-on-ChipsThis video describes the “Interrogator” instrument that can be programmed to culture up to 10 different Organ Chips and sequentially transfer fluids between their vascular channels to mimic normal human blood flow between the different organs of our body. Its integrated microscope enables the continuous monitoring of the tissues’ integrities in the individual organ chips...
-
Video/AnimationAAV Capsid EngineeringWyss researchers have created a high-throughput platform to generate an Adeno-associated virus 2 (AAV2) library containing 200,000 variants, each carrying a distinct mutation in the virus capsid protein. Their analysis identified capsid changes that enhanced “homing” potential to specific organs in mice and virus viability, as well as a new protein hidden in the capsid-encoding...
-
Video/AnimationLighting up proteins with Immuno-SABERThis animation explains how Immuno-SABER uses the Primer Exchange Reaction (PER) to enable the simultaneous visualization of multiple proteins in tissues in different applications. Credit: Wyss Institute at Harvard University.
-
Video/AnimationHumans of the Wyss – Faculty Edition with Mike LevinOur interview series, “Humans of the Wyss – Faculty Edition,” features Wyss Institute faculty members discussing how they think about their work, the influences that helped shape them as scientists, and their collaborations at the Wyss Institute and beyond. In the second edition of the series, Benjamin Boettner, Wyss Institute Communications team member, talks to...
-
Video/AnimationSelf-regenerating bacterial hydrogels as intestinal wound patchesThis animation explains how self-regenerating bacterial hydrogels could be used as adhesive patches to help intestinal wounds heal. Credit: Wyss Institute at Harvard University.