Multimedia search results
54 Results for ''
-
Video/AnimationAminoX: Making Better Protein Drugs, Quicker and CheaperA synthetic biology and advanced chemistry platform that efficiently incorporates non-standard amino acids by hacking the ubiquitous protein synthesis process. Credit: Wyss Institute at Harvard University
-
Video/AnimationMice Don’t Menstruate: Reimagining Women’s Health Using Organ Chips with Dr. Donald IngberIn this episode, host Sharon Kedar, Co-Founder of Northpond Ventures, is joined by Dr. Donald Ingber, Founding Director at Wyss Institute for Biologically Inspired Engineering at Harvard University. Dr. Ingber’s commitment to following his passion has led him to countless medical and technological breakthroughs, including Organ Chip technology. These incredible chips recreate the structure and...
-
Video/AnimationWhat is the future of Engineering with Bioengineering Pioneer Donald E Ingber – Museum of ScienceIs biological inspiration the key to the future of engineering? Bioethicist Insoo Hyun sits down with Donald E. Ingber, Founding Director of the Wyss Institute for Biologically Inspired Engineering and Professor of Bioengineering at Harvard’s School of Engineering & Applied Sciences. Together they explore the profound impact of Nature on engineering beyond the realms of...
-
Video/AnimationWyss Institute: Past, Present, FuturePrior to the Wyss Institute’s founding in 2009, a working group at Harvard University assembled envision the future of biomedical engineering. Now in 2023, we see the how this foundation led to successful technologies positively impacting human and planet health. Credit: Wyss Institute at Harvard University
-
Video/AnimationBridging science, engineering, and art: from mechanobiology to Human Organs-on-ChipsIn this Marsilius Lecture, Wyss Founding Director Don Ingber shares his personal path from a serendipitous experience in an undergraduate art class that led to his discovery of how living cells are constructed using “tensegrity” architecture and how this contributed to the birth of the field of Mechanobiology to his more recent work on human...
-
Video/AnimationNovel Model Organisms w/ Don Ingber & Hans Clevers – BIOS RoundtableDon Ingber – Founding Director at Wyss Institute Hans Clevers – Head of Pharma Research & Development (pRED) at Roche Hear about the evolution of humanized models and their potential applications in drug development, personalized medicine, and more. Ingber and Clevers share their scientific experiences and expertise. They also discuss misconceptions surrounding the application of...
-
Video/AnimationFeCILL: Reimagining How We Treat the Sickest PatientsOpportunistic fungal infections usually only affect patients whose immune systems are compromised, but when they do, they are often deadly – the mortality rate for these infections can be as high as 25%. Existing antifungal treatments have high levels of toxicity, and can harm the patient more than they help. Researchers at the Wyss Institute...
-
Video/AnimationInnovation Institutes w/ Don Ingber, David Baker, Brad Ringeisen, & Patrick Hsu – BIOS Roundtable #6Don Ingber – Founding Director at the Wyss Institute & Professor at Harvard Brad Ringeisen – Executive Director at Innovative Genomics Institute David Baker – Professor at UW & Director at Institute for Protein Design Patrick Hsu – Assistant Professor at UC Berkeley & Co-Founder at Arc Institute As the number of breakthrough biomedical discoveries...
-
Audio/PodcastAnimal Free Labcast #4 – The PioneerWorld-class pioneer of biomedical research and innovation, Dr. Don Ingber, is the founding director of Harvard University’s Wyss Institute for Biologically Inspired Engineering. In 2010, Dr. Ingber developed a lung-on-a-chip – the first of its kind – and has continued to lead the field by developing numerous other organ chip models, demonstrating their ability to...
-
Audio/PodcastPreventing the Next Pandemic with Organ ChipsIn search for strategies to curb pandemics, scientists strive to understand how pathogens slip past the immune system and wreak havoc on the body. To achieve this goal, researchers study viral infection in models that mimic how different cell types interact with each other, the immune system, or the environment. Organ-on-a-chip models combine tissue engineering...
-
Audio/PodcastBIOS Podcast – Biologically Inspired Engineering w/ Don Ingber – Founding Director at the Wyss InstituteDon Ingber is the Founding Director of the Wyss Institute for Biologically Inspired Engineering at Harvard University, the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences. He received...
-
Video/AnimationWyss Institute Brain Targeting ProgramThis animation explains how Wyss Institute researchers and their industry partners aim to identify novel transport targets and shuttle compounds to enable more effective delivery of drugs to the brain. Credit: Wyss Institute at Harvard University.
-
Video/AnimationAdvancing Science and Technology Innovation By Crossing the Art-Science-Design InterfaceWyss Founding Director Donald E. Ingber, M.D., Ph.D., presented on Advancing Science and Technology Innovation by Crossing the Art-Science-Design Interface at the KAUST Circular Carbon Initiative’s 2021 virtual Winter Enrichment Program. Ingber discussed his path from a serendipitous experience in an undergraduate art class that led to his discovery of how living cells are constructed...
-
Video/AnimationOMNIVAX: Infection Vaccine PlatformThis video explains how OMNIVAX – an immuno-material-based vaccine technology can be used to rapidly create injectable vaccines against diverse viral and bacterial pathogens, and how the platform is used by the team to develop a vaccine against recurring urinary tract infections (UTIs) in their lead human application. Credit: Wyss Institute at Harvard University.
-
Video/AnimationBeating Back the Coronavirus: FDA-Approved Drug Repurposing PipelineWith the goal of rapidly repurposing FDA-approved drugs to treat COVID-19, the Wyss Institute is collaborating with the Frieman Lab at the University of Maryland Medical School and the tenOever Lab at the Icahn School of Medicine at Mount Sinai to establish a multidisciplinary pipeline that can rapidly predict, test, and validate potential treatments. Credit:...
-
Audio/PodcastTalking Techniques: Donald Ingber: How COVID-19 is changing conservatism in life sciences (Part 2)Following on from part 1 of this interview with the Founding Director of the Wyss Institute, Donald Ingber discusses the reasons he thinks organ-on-a-chip technologies are yet to be widely implemented in research. Expanding on elements of conservatism rooted in certain aspects of the life sciences, Donald explores how the scientific response to the current COVID-19 pandemic is challenging entrenched...
-
Audio/PodcastTalking Techniques: COVID-19, Organ Chips and the Wyss Institute (Part 1)In the first installment of this two-part episode with Donald Ingber, Founding Director of the Wyss Institute (MA, USA), we discuss his invention of organ-on-a-chip technology, how he is utilizing them in the fight against COVID-19 and the Wyss Institute’s response to the pandemic. Donald touches on the performance of the much-discussed chloroquine in his...
-
Video/AnimationCreating Scientific Marvels that are Works of ArtDuring his TEDx talk, Don Ingber shares his personal path from an ‘Aha’ moment in an undergraduate art class that led to his discovery of how living cells are constructed to his most recent breakthrough – a Human Body-On-Chips – which promises to replace animal testing and advance personalized medicine. Don’s work breaks down boundaries...
-
Video/AnimationCogniXense: Speeding Up Treatments for Rare DiseasesAt the Wyss Institute, we are tackling Rett syndrome, a rare disease that affects 1 out of 9,000 children, by developing a scalable model for neurodevelopmental and cognitive diseases. This model can test drugs to see which will improve memory, learning, and behavior, with the end goal of finding effective therapies. Credit: Wyss Institute at...
-
Video/AnimationInterrogator: Human Organ-on-ChipsThis video describes the “Interrogator” instrument that can be programmed to culture up to 10 different Organ Chips and sequentially transfer fluids between their vascular channels to mimic normal human blood flow between the different organs of our body. Its integrated microscope enables the continuous monitoring of the tissues’ integrities in the individual organ chips...
-
Video/AnimationeRAPID: a Platform for Portable DiagnosticseRapid is an electrochemical sensing platform that uses a novel antifouling coating to enable low-cost, multiplexed detection of a wide range of biomolecules for diagnostics and other applications. Credit: Wyss Institute at Harvard
-
Video/AnimationOrigami OrgansA multidisciplinary team of scientists, engineers, and architectural designers are developing Origami Organs that could function like artificial kidneys. Credit: Wyss Institute at Harvard University
-
Video/AnimationabbieSenseabbieSense is a Wyss technology that can detect histamine levels in human body fluids and determine the severity of an allergic reaction, which could help save the lives of patients with severe allergies. Credit: Wyss Institute at Harvard University
-
Video/AnimationThis is Your Brain on ChipsHow do you study something as complex as the human brain? Take it apart. Wyss researchers have created Organ Chips that mimic the blood-brain barrier and the brain and, by linking them together, discovered how our blood vessels and our neurons influence each other. Credit: Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Art Advances ScienceIn this episode of Disruptive, Wyss Institute Founding Director Don Ingber and Staff Scientist Charles Reilly discuss their process creating The Beginning, a short film inspired by Star Wars, to better communicate science to the public…and how they made a scientific discovery along the way. To make The Beginning, film industry visual effects and animation...
-
Video/AnimationTherapeutic Organ Engineering: Highlights From The 8th Annual Wyss SymposiumThe 8th Annual Wyss International Symposium focused on innovations in therapeutic organ engineering, featuring diverse speakers doing exciting work in 3D organ engineering, materials fabrication, and vascular integration. This video highlights some of the themes discussed in their presentations as well as the advances that are leading to the ultimate goals of developing new approaches...
-
Video/AnimationScience On TapDuring this live studio recording of Science On Tap, Donald Ingber, M.D., Ph.D. will explain to host Graham Chedd why the name of the institute he heads at Harvard, the Wyss Institute for Biologically Inspired Engineering, nicely sums up its goal. Dr. Ingber’s stellar career has focused on turning nature’s solutions to engineering problems into...
-
Video/AnimationThe BeginningThe struggle for supremacy has begun. But only one will be victor. Only one will dictate the future for generations to come… Watch the new official trailer now.
-
Video/Animation8th Annual Wyss Institute Symposium: Therapeutic Organ EngineeringScreened just before the symposium opening, this animation artistically connects concepts of therapeutic organ engineering presented during the event. Credit: Wyss Institute at Harvard University
-
Video/AnimationPodocyte Cells: Kidney-on-a-ChipThis video shows a 3-dimensional rendering of the glomerulus-on-a-chip with human stem cell-derived mature podocytes (in green) grown and differentiated in one channel (shown on top) and that extend their processes through the modeled glomerulus basement membrane towards glomerular vascular cells (in magenta) in the parallel running channel (shown on the bottom). Credit: Wyss Institute...
-
Video/AnimationProject ABBIEProject ABBIE is inspired by the story of Abbie Benford, who succumbed to complications related to anaphylaxis just eight days before her 16th birthday. The Wyss Institute, in collaboration with Boston Children’s Hospital, is developing a wearable, non-invasive device that could sense anaphylaxis and automatically inject epinephrine in individuals who are unable to do so...
-
Video/AnimationSmoking Human Lung Small Airway-on-a-ChipIn this video, Wyss Founding Director Donald Ingber and Technology Development Fellow Kambez Benam explain how the integrated smoking device mimics normal cigarette smoke exposure and how it can impact research into the causes of COPD and into new biomarkers and therapeutics. Credit: Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Mechanotherapeutics – From Drugs to WearablesMechanobiology reveals insights into how the body’s physical forces and mechanics impact development, physiological health, and prevention and treatment of disease. The emerging field of Mechanotherapeutics leverages these insights towards the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways...
-
Audio/PodcastThe Modest Mouse: Why We Use Mice in MedicineThe Modest Mouse: Why We Use Mice in Medicine was originally broadcast on NPR’s Innovation Hub on July 2016. This story features Wyss Core Faculty member Don Ingber. The original broadcast story can be found here.
-
Video/AnimationSmall Airway-on-a-Chip: Modeling COPD and AsthmaDevelopment of new therapeutics for chronic lung diseases have been hindered by the inability to study them in vitro. To address this challenge, Wyss Institute researchers used their Organ-on-a-Chip technology to produce a microfluidic ‘human lung small airway-on-a-chip.’ The device, which is composed a clear rubber material, is lined by living Human lung small airway...
-
Audio/PodcastDisruptive: Confronting SepsisIn this episode of Disruptive, Wyss Institute Founding Director Don Ingber and Senior Staff Scientist Mike Super discuss how their team developed a new therapeutic device inspired by the human spleen. This blood-cleansing approach can remove sepsis-causing pathogens from circulating blood without ever needing to know their identity. In animal studies, treatment with this device...
-
Video/AnimationPathogen-Extracting Sepsis TherapyThis video explains how sepsis induced by an overload of blood pathogens can be treated with the Wyss Institute’s improved pathogen-extracting, spleen-mimicking device. Blood is flown through a cartridge filled with hollow fibers that are coated with a genetically engineered blood protein inspired by a naturally-occurring human molecule called Mannose Binding Lectin (MBL). MBL is...
-
Video/AnimationGastrointestinal Re-ProgrammingIn this animation, see an example of how genetically engineered microbes being developed by researchers at the Wyss Institute could detect and treat a wide range of gastrointestinal illnesses and conditions. Credit: Wyss Institute at Harvard University
-
Video/AnimationEnvironmental Impact: Chitin-Inhibiting Pesticides Called into QuestionChitin, a molecule that serves a purpose in the developmental biology of insects, fungi and shrimp, has long been a target of growth-inhibiting pesticides due to the belief that it did not exist in vertebrates. For decades, chitin-inhibiting pesticides have stunted the growth of insects and fungi to protect valuable crops. Now, research from the...
-
Video/AnimationHuman Organs-On-ChipsWyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each individual organ-on-chip is composed of a clear flexible polymer...
-
Video/AnimationBioinspired Blood Repellent CoatingIn this video, Wyss Institute Founding Director Don Ingber, Core Faculty member Joanna Aizenberg, Staff Scientist Dan Leslie and Postdoctoral Fellow Anna Waterhouse explain how a coating they developed using FDA-approved materials could prevent blood clotting in medical devices without the use of blood thinners. Credit: Wyss Institute at Harvard University
-
Audio/PodcastCyborg Microchip MedicineThis edition of Revolutions focuses on Cyborg Microchip Medicine. Dr Don Ingber, Director of the Wyss Institute for Biologically Inspired Engineering at Harvard University is visiting Melbourne University and discussed this revolutionary research with Jon Faine.
-
Video/AnimationBioinspired Approach to Sepsis TherapyWyss Institute Founding Director Don Ingber, Senior Staff Scientist Michael Super and Technology Development Fellow Joo Kang explain how they engineered the Mannose-binding lectin (MBL) protein to bind to a wide range of sepsis-causing pathogens and then safely remove the pathogens from the bloodstream using a novel microfluidic spleen-like device. Credit: Wyss Institute at Harvard...
-
Video/AnimationBone Marrow-on-a-ChipWyss Institute Founding Director Don Ingber, Postdoctoral Fellow Yu-suke Torisawa, and Researcher Catherine Spina explain how and why a they built bone marrow-on-a-chip, and how they got it to act like whole living marrow and manufacture blood cells. Credit: Wyss Institute at Harvard University
-
Video/AnimationShrinking GelWhen the temperature rises to just below body temperature, this biocompatible gel shrinks dramatically within minutes, bringing tooth-precursor cells (green) closer together. Credit: Basma Hashmi
-
Video/AnimationChitosan BioplasticIn this video, the team grew a California Blackeye pea plant in soil enriched with its chitosan bioplastic over a three-week period – demonstrating the material’s potential to encourage plant growth once it is returned to the environment. Credit: Wyss Institute at Harvard University
-
Audio/PodcastA Lecture in Cell and Developmental Biology: Mechanobiology and Developmental ControlDonald E. Ingber, Founding Director of the Wyss Institute, Judah Folkman Professor of Vascular Biology at Harvard Medical School, and Professor of Bioengineering at the Harvard School of Engineering and Applied Sciences, talks about his article “Mechanobiology and Developmental Control,” which he wrote with Tadanori Mammoto and Akiko Mammoto for the 2013 Annual Review of...
-
Video/AnimationNanoRx: Clot-Busting NanotherapeuticIn this animation, learn how the Wyss Institute clot-busting nanotherapeutic is activated by fluid high shear force – which occurs where blood flows through vessels narrowed by obstruction – to specifically target clots and dissolve them away. By pairing this drug with an intra-arterial device that restores blood flow to complete obstructions, the drug-device combination...
-
Video/AnimationResearchers mimic pulmonary edema in Lung-on-a-ChipThe Wyss Institute’s human breathing lung-on-a-chip, made using human lung and blood vessel cells, acts much like a lung in a human body. A vacuum re-creates the way the lungs physically expand and contract during breathing. As reported in Science Translational Medicine on November 7, 2012, Wyss researchers have now mimicked a human disease –...
-
Audio/PodcastBuilding Organs, On One Microchip At A TimeBuilding Organs, On One Microchip At A Time was originally broadcast on NPR on July 29, 2012. This story features Wyss Core Faculty member Don Ingber. Original broadcast story can be found here.
-
Video/AnimationClot-busting nanotherapeuticWyss Core Faculty member Donald E. Ingber describes the clot-busting nanotherapeutic. Credit: Wyss Institute at Harvard University
-
Audio/PodcastBuilding an Organ on a ChipProduced for MIT Technology Review by Kyanna Sutton and Susan Young, this audio segement features Wyss Institute Core Faculty member Don Ingber speaking about how cells grown on the Wyss Institute’s organ-on-chip devices behave more like cells in the body. The devices could improve the speed and success of drug discovery and reduce animal testing....
-
Video/AnimationIntroduction to Organs-on-a-ChipWhat if we could test drugs without animal models? Wyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each...
-
Video/AnimationLung-on-a-ChipCombining microfabrication techniques with modern tissue engineering, lung-on-a-chip offers a new in vitro approach to drug screening by mimicking the complicated mechanical and biochemical behaviors of a human lung. This extended version of the video includes our findings when we mimicked pulmonary edema on the chip. Credit: Wyss Institute at Harvard University