Search results
262 Results for 'Materials Science'
- Technologies (23)
- Collaborations (1)
- Team (0)
- News (184)
- Pages (0)
- Multimedia (54)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 23
-
Soft hydrogel electrodes for better, safer implants
Soft, conductive hydrogels match the physical properties of the human brain, enabling the creation of electrodes and implantable devices that can improve brain-machine interfaces while reducing the risk of injury. -
Sugar-to-Fiber Enzyme for Healthier Food
In collaboration with Kraft Heinz, our sugar-to-fiber product can convert sugar in food products into prebiotic fiber in the human gut, reducing the amount of sugar absorbed into the bloodstream without altering the amount of sugar in existing food product recipes. -
MyoExo: Smart Wearable Sensors for Parkinson’s Disease
MyoExo is a wearable, fabric-based device with integrated smart sensors that aims to accurately monitor the primary signs of Parkinson’s Disease over time, improving diagnosis and treatment. -
cSNAP: Eco-Friendly Air Conditioning
Our eco-friendly air conditioning technology is a low-carbon-footprint evaporative cooling system that reduces indoor air temperature without adding humidity. -
Tough Gel Adhesives for Wound Healing
A Band-Aid® adhesive bandage is an effective treatment for stopping external bleeding from skin wounds, but an equally viable option for internal bleeding does not yet exist. Surgical glues are often used inside the body instead of traditional wound closure techniques like stitches, staples, and clips because they reduce the patient’s time in the hospital... -
Nanoarchitectures for Air Purification
Metalmark is using the Wyss Institute's butterfly-inspired nanoarchitecture coating to create air purification technology that can destroy airborne pollutants including chemicals, viruses, and smog in indoor and outdoor air at a fraction of the cost of current catalytic converter systems.
Collaborations 1
News 184
Multimedia 54
-
Video/AnimationHow can we increase energy efficiency?Description: Inspired by the pitcher plant, researchers at the Wyss Institute, created a non-stick, ultra-repellent, self-healing surface coating called SLIPS (Slippery Liquid-Infused Porous Surfaces). This example of bio-inspired engineering, a hallmark of the Wyss, has numerous applications such as in medical devices, HVAC, refrigeration, marine engineering, aviation, and manufacturing. Credit: Wyss Institute at Harvard University
-
Video/AnimationcSNAP: Reimagining CoolingWe are reimagining air-conditioners to meet increasing global cooling demand while combatting climate change. Our novel evaporative cooling technology, cSNAP, uses advanced materials science and design to make affordable, environmentally-positive eco-friendly air conditioners that work in most climates without the use of synthetic refrigerants. Credit: Wyss Institute at Harvard University
-
Video/AnimationInnovation Showcase – Tough Gel TechnologyJay Sugarman talks with Benjamin Freedman, PhD. Benjamin is a Postdoctoral Fellow at the Wyss Institute for Biologically Inspired Engineering at Harvard University. He’s on Innovation Showcase to inform viewers about the groundbreaking research he and some of his colleagues have been involved with related to the development of the next generation of medical-grade adhesives,...
-
Video/AnimationBeating Back the Coronavirus – Nasal swabsEarly in the COVID-19 pandemic, Nasopharyngeal swabs or nasal swabs, used to collect mucus samples to test for the SARS-CoV-2 virus, were in short supply. This created a bottleneck in diagnostics, hampering our ability to control the pandemic. To respond to this need, an interdisciplinary team at the Wyss Institute and Harvard Medical School collaborated...
-
Video/AnimationOMNIVAX: Infection Vaccine PlatformThis video explains how OMNIVAX – an immuno-material-based vaccine technology can be used to rapidly create injectable vaccines against diverse viral and bacterial pathogens, and how the platform is used by the team to develop a vaccine against recurring urinary tract infections (UTIs) in their lead human application. Credit: Wyss Institute at Harvard University.
-
Video/AnimationSoft Robotic Gripper for Jellyfish 2.0Scientists from the Wyss Institute at Harvard University and CUNY have created ultra-soft robotic grippers that resemble fettuccini noodles to safely catch and release delicate underwater creatures like jellyfish without harm. Credit: Wyss Institute at Harvard University