Technologies search results
19 Results for ''
-
OMNIVAX: Broadly Deployable Infection Vaccine Platform
Infectious diseases pose one of the greatest threats to public health, and vaccination campaigns with broad population coverage – arguably the most powerful strategy for preventing, controlling, and treating infectious diseases – have eradicated or significantly reduced the risk of contracting diseases such as smallpox, measles, polio, and tetanus. However, there is a constant need for... -
cold-SNAP: Eco-Friendly Air Conditioning
As average global temperatures steadily climb, the worldwide demand for air conditioning is expected to triple by 2050. Conventional air conditioners, while now cheap to manufacture, still rely on low-efficiency mechanical vapor compression to cool and dehumidify air, making them one of the largest consumers of energy in industrialized countries. An alternative cooling method called... -
Single-Cell Encapsulation for Improved Cell Therapies
Mesenchymal stromal cells (MSCs) are valued for their ability to secrete compounds that modulate the body’s immune system, making them an attractive solution for existing problems with cell therapies including host-vs-graft disease and organ transplant rejections. However, MSCs are rapidly cleared from the body and can come under fire from the immune system. Efforts to... -
Smart Tools: RFID Tracking for Surgical Instruments
Surgeons can use up to 250 different tools during a surgical procedure to perform tasks like cutting, grasping, cauterizing, suturing, suctioning, and reducing bleeding. Each tool must be manually counted by hospital staff both before and after surgery to ensure that none of them have gone missing, which is a tedious and time-consuming process. This... -
Injectable Alginate Hydrogels for Medical Applications
One of the biggest challenges in medicine is getting a drug to the right part of the body at the right time. Even when the target site in the body is known, like a pain-causing injury or a cancerous tumor, most drugs are given as oral pills or intravenous infusions, which limits their effectiveness. In... -
Liquid-Infused Tympanostomy Tubes
Acute middle ear infections affect more than 700 million people each year, with children often experiencing the most recurrent and severe symptoms due to their underdeveloped physiology. By the age of three, 25-40 % of children have had at least three episodes of acute middle ear infection, which is commonly accompanied by excess fluids accumulating... -
Flexible Embedded Liquid Sensors
As we shift from carrying electronic devices in our pockets and purses to wearing them on our bodies, those devices need to be able to move and stretch with us, and to sense our movements in order to better do so. Such sensors must remain functional when stretched to several times their resting length, resist... -
Nanoarchitectures for Air Purification
Illnesses caused by air pollution are the third-leading cause of death in developing nations, and over 5 million people worldwide die every year from air pollution exposure. Catalytic converters, the most widely used air purification devices, convert the toxic gases and pollutants produced by fuel combustion into benign chemicals before the exhaust is released into... -
Tough Gel Adhesives for Wound Healing
A Band-Aid® adhesive bandage is an effective treatment for stopping external bleeding from skin wounds, but an equally viable option for internal bleeding does not yet exist. Surgical glues are often used inside the body instead of traditional wound closure techniques like stitches, staples, and clips because they reduce the patient’s time in the hospital... -
T Cell Traps
T cells, a subtype of white blood cells, play key roles in cell-mediated immunity, be it to fight infections and cancer or, when corrupted, to react against the body’s own cells in more than 80 autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and others. However, isolating disease-related T cells from the body... -
TLP: A Non-Stick Coating for Medical Devices
Every device implanted in the body or in contact with flowing blood faces two critical challenges that can threaten the life of the patient it is meant to help: blood clotting and bacterial infection. To confront this challenge, Wyss Institute researchers created a super-repellent, Thin Layer Perfluorocarbon (TLP) coating specifically designed to prevent clot formation... -
Dynamic Daylight Control System
In the U.S. alone, commercial and residential buildings account for more than 40 percent of the total energy consumption – mostly for lighting. What’s more, the deep building layouts that are typical in the U.S. have led to a complete reliance on artificial lighting systems that are less desirable than natural daylight. Many of the... -
Liquid-Gated Membranes for Filtration
Just like pores in living organisms that control the absorption and excretion of fluids, gases and solids in response to their environments, flow-gating membranes have proved very useful for many mechanical systems, such as gas and liquid separators, dialysis machines, or open heart bypass pumps. But conventional approaches to create synthetic “gated pores” within those... -
SLIPS: Slippery Liquid-Infused Porous Surfaces
The need for an inexpensive, super-repellent surface cuts across a vast swath of societal sectors—from refrigeration and architecture, to medical devices and consumer products. Most state-of-the-art liquid repellent surfaces designed in the last decade are modeled after lotus leaves, which are extremely hydrophobic due to their rough, waxy surface and the physics of their natural... -
RoboBees: Autonomous Flying Microrobots
Inspired by the biology of a bee, researchers at the Wyss Institute are developing RoboBees, manmade systems that could perform myriad roles in agriculture or disaster relief. A RoboBee measures about half the size of a paper clip, weighs less that one-tenth of a gram, and flies using “artificial muscles” compromised of materials that contract when... -
Pop-Up MEMS: Origami-Inspired Micromanufacturing
Recent decades have seen rapid development in the manufacture of microelectromechanical systems (MEMS) at the micrometer scale, mostly based on silicon wafer processing techniques, with characteristic length scales of millimeters to nanometers. However, standard MEMS techniques are often inappropriate for producing machines with complex 3D topologies and varied constituent materials at the mesoscale, at sizes... -
4D Printing of Shapeshifting Devices
Organisms, such as flowers and plants, have tissue compositions and microstructures creating dynamic morphologies that can shapeshift in response to changes in their environments. Researchers at the Wyss Institute have mimicked a variety of such dynamic shape changes like those performed by tendrils, leaves, and flowers in response to changes in humidity or temperature with... -
3D Bioprinting of Living Tissues
Progress in drug testing and regenerative medicine could greatly benefit from laboratory-engineered human tissues built of a variety of cell types with precise 3D architecture. But production of greater than millimeter sized human tissues has been limited by a lack of methods for building tissues with embedded life-sustaining vascular networks. In this video, the Wyss... -
Flexi-Mitts: Neuromoter and Cognitive Ability Tracker
Advances in medical care have improved the survival of very low birth weight premature infants but at the same time have also led to an increased number of surviving infants with reduced cerebral growth and long-term neurodevelopmental motor, cognitive, and social morbidities. These complications are met by a lack of early assessment tools for diagnosing...