Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired Therapeutics & DiagnosticsTherapeutic discovery and diagnostics development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Computational Design & DiscoveryCombining predictive bioanalytics and machine learning with physical and mathematical modeling and simulation
- Diagnostics AcceleratorDeveloping new diagnostic technologies that solve important healthcare challenges through collaboration at the Wyss Institute with clinicians and industry partners
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Aging
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Anti-aging
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
0 Results for No Current Selection
-
Audio/PodcastIdeas to Innovation – From Lab to Life: The Transformative Power of Synthetic BiologyRapid advancements in technology and science are shaping a new era, with artificial intelligence and synthetic biology, or “syn-bio,” at the forefront. Heralded as the next big leap in science, syn-bio involves redesigning organisms for useful purposes by engineering them to have new abilities. The importance of syn-bio for people and our planet cannot be...
-
Video/AnimationReimagine the World Trailer – Keep GoingPatients, clinicians, and family members of patients share how researchers are giving them hope for a better future. Credit: Wyss Institute at Harvard University
-
Video/AnimationWyss Institute: Past, Present, FuturePrior to the Wyss Institute’s founding in 2009, a working group at Harvard University assembled envision the future of biomedical engineering. Now in 2023, we see the how this foundation led to successful technologies positively impacting human and planet health. Credit: Wyss Institute at Harvard University
-
Video/AnimationOur Sustainable FutureThe Wyss Institute is developing sustainable materials and devices to ensure a bright future and a healthy planet for future generations to inherit. Credit: Wyss Institute at Harvard
-
Video/AnimationReConstruct – 3D Bioprinted Vascularized Fat Tissues for Breast ReconstructionBreast cancer affects 15% of all women. Current options for breast reconstruction are insufficient and have poor patient outcomes. A research team at the Wyss Institute is addressing this clinical need by fabricating vascularized adipose tissue flaps for therapeutic use. Credit: Wyss Institute at Harvard University
-
Video/AnimationVesma – Refrigerant-Free, Eco-Friendly Cooling for All ClimatesAn interdisciplinary team from the Wyss Institute, Harvard School of Engineering and Applied Sciences, and Harvard Graduate School of Design is continuing to advance global climate solutions for building cooling. By combining the evaporative cooling technology, cSNAP, and vacuum membrane dehumidification, the team has developed a refrigerant-free, eco-friendly cooling solution suitable for all climates. Credit:...
-
Video/AnimationWorld of OMICs w/ David Walt & Mike Snyder – BIOS RoundtableThis is a roundtable discussion on the world of OMICs with Wyss Core Faculty member David Walt and Mike Snyder of Stanford University presented by BIOS. David Walt is a Hansjörg Wyss Professor of Biologically Inspired Engineering at Harvard Medical School, a Professor of Pathology at Brigham and Women’s Hospital, a Core Faculty member at...
-
Video/AnimationPeter Nguyen: Biology Engineering, Bigfoot Hunting, and Better Climate TechnologyWyss Senior Scientist Peter Nguyen received a B.S. in Biochemistry and B.A. in Philosophy from the University of Texas, his M.Bs. from the Keck Graduate Institute, and his Ph.D. in Biochemistry from Rice University. At the Wyss Institute, Peter currently works on programmable probiotics and freeze-dried cell-free manufacturing technology across multiple platforms. His research interests...
-
Video/AnimationGenetic & Cellular Engineering w/ David Schaffer & Samir Mitragotri – BIOS RoundtableSamir Mitragotri is a Core Faculty member at the Wyss Institute and the Hiller Professor of Bioengineering & Hansjorg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS. David Schaffer is Professor at UC Berkeley & Director at BBH. The two discuss Genetic and Cellular Engineering, with a focus on delivery challenges.
-
Video/AnimationBridging science, engineering, and art: from mechanobiology to Human Organs-on-ChipsIn this Marsilius Lecture, Wyss Founding Director Don Ingber shares his personal path from a serendipitous experience in an undergraduate art class that led to his discovery of how living cells are constructed using “tensegrity” architecture and how this contributed to the birth of the field of Mechanobiology to his more recent work on human...
-
Video/AnimationNovel Model Organisms w/ Don Ingber & Hans Clevers – BIOS RoundtableDon Ingber – Founding Director at Wyss Institute Hans Clevers – Head of Pharma Research & Development (pRED) at Roche Hear about the evolution of humanized models and their potential applications in drug development, personalized medicine, and more. Ingber and Clevers share their scientific experiences and expertise. They also discuss misconceptions surrounding the application of...
-
Video/AnimationHow do we make safer and more effective drugs?Wyss researchers are using an ever-growing number of human tissue-mimicking Organ Chips to improve and accelerate the drug development process for a wide number of unmet diseases – and understand what causes them to erupt. More recently, they added a human Vagina Chip and personalized Barrett’s esophagus Chip to their arsenal, and created in vitro...