Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired Therapeutics & DiagnosticsTherapeutic discovery and diagnostics development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Computational Design & DiscoveryCombining predictive bioanalytics and machine learning with physical and mathematical modeling and simulation
- Diagnostics AcceleratorDeveloping new diagnostic technologies that solve important healthcare challenges through collaboration at the Wyss Institute with clinicians and industry partners
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Aging
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Anti-aging
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
0 Results for No Current Selection
-
Video/AnimationGenetic & Cellular Engineering w/ David Schaffer & Samir Mitragotri – BIOS RoundtableSamir Mitragotri is a Core Faculty member at the Wyss Institute and the Hiller Professor of Bioengineering & Hansjorg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS. David Schaffer is Professor at UC Berkeley & Director at BBH. The two discuss Genetic and Cellular Engineering, with a focus on delivery challenges.
-
Video/AnimationBridging science, engineering, and art: from mechanobiology to Human Organs-on-ChipsIn this Marsilius Lecture, Wyss Founding Director Don Ingber shares his personal path from a serendipitous experience in an undergraduate art class that led to his discovery of how living cells are constructed using “tensegrity” architecture and how this contributed to the birth of the field of Mechanobiology to his more recent work on human...
-
Video/AnimationNovel Model Organisms w/ Don Ingber & Hans Clevers – BIOS RoundtableDon Ingber – Founding Director at Wyss Institute Hans Clevers – Head of Pharma Research & Development (pRED) at Roche Hear about the evolution of humanized models and their potential applications in drug development, personalized medicine, and more. Ingber and Clevers share their scientific experiences and expertise. They also discuss misconceptions surrounding the application of...
-
Video/AnimationHow do we make safer and more effective drugs?Wyss researchers are using an ever-growing number of human tissue-mimicking Organ Chips to improve and accelerate the drug development process for a wide number of unmet diseases – and understand what causes them to erupt. More recently, they added a human Vagina Chip and personalized Barrett’s esophagus Chip to their arsenal, and created in vitro...
-
Video/AnimationNucleoTide – CRISPR-based biosensors for rapidly detecting harmful marine microbesThe warming of the oceans due to climate change has increased the frequency and potency of harmful algal blooms. These algae species produce toxins that can harm or even kill people, fish, shellfish, marine mammals, and birds. Researchers at the Wyss Institute are working to develop inexpensive sensors that could detect dangerous algae species earlier...
-
Video/AnimationHow can we train the immune system to fight cancer?The implantable cancer vaccine is a biomaterial that recruits and reprograms a patient’s own immune cells on-site to kill cancer cells. This revolutionary immuno-material technology was tested in a Phase I clinical trial with promising results and is currently licensed by Novartis as an immunotherapy to treat specific tumor types. Credit: Wyss Institute at Harvard...
-
Video/AnimationHow can we restore mobility to the sick and injured?Researchers at the Wyss Institute are working to improve treatment outcomes for patients suffering from reduced mobility. This video focuses on two platform technologies that could improve the quality of life for these patients: stochastic resonance and wearable soft robotics. Credit: Wyss Institute at Harvard University
-
Video/AnimationHow can we increase energy efficiency?Inspired by the pitcher plant, researchers at the Wyss Institute, created a non-stick, ultra-repellent, self-healing surface coating called SLIPS (Slippery Liquid-Infused Porous Surfaces). This example of bioinspired engineering, a hallmark of the Wyss, has numerous applications such as in medical devices, HVAC, refrigeration, marine engineering, aviation, and manufacturing. Credit: Wyss Institute at Harvard University
-
Video/AnimationHow can we get diagnostics to patients faster?The Wyss Diagnostics Accelerator (DxA) is an initiative to enable the fast creation of diagnostic technologies to solve high-value clinical problems through deep collaborations driven by unmet diagnostic needs. Credit: Wyss Institute at Harvard University
-
Video/AnimationHow can we feed the world?The current agricultural methods of feeding the world are not sustainable and already have dire consequences that will worsen as the Earth’s population continues to grow. Researchers at the Wyss Institute are working on various solutions that could help provide food for our future needs with a lower environmental impact. Credit: Wyss Institute at Harvard...
-
Video/AnimationHow can we better treat brain diseases?The Brain Targeting Program at the Wyss Institute is a pre-competitive, multi-partner industry collaboration that aims to identify novel transport targets and shuttle compounds to enable more effective delivery of drugs to the brain. Credit: Wyss Institute at Harvard University
-
Audio/PodcastBIOS Podcast – Future of Microfluidics with David Weitz – Professor at Harvard/Core Faculty at Wyss InstituteDavid Weitz is the Mallinckrodt Professor of Physics & Applied Physics and professor of Systems Biology at Harvard University. Weitz is best known for his work in the areas of diffusing-wave spectroscopy, microrheology, microfluidics, rheology, fluid mechanics, interface and colloid science, colloid chemistry, biophysics, complex fluids, soft condensed matter physics, phase transitions, the study of...