Technologies search results
15 Results for ''
-
MyoExo: Wearable Muscle-Centric Sensors for Improved Assessment of Neurological Disorders
MyoExo is a diagnostic technology based on strain sensors that can accurately detect muscle rigidity in patients with Parkinson’s disease and other neurological disorders. Data obtained with the device continuously from patients could improve the monitoring of treatments, and therapeutic interventions. -
Manufacturing Mini Surgical Robots
Project 1985 is commercializing the Wyss Institute’s Pop-Up MEMS technology to quickly and cheaply develop tiny robotic tools for minimally invasive surgery. -
Microrobotic Laser-Steering Medical Device for Minimally Invasive Surgery
Endoscopy has proven extremely useful in many areas of medicine because it can be carried out with relatively few risks in a short time, and be used to diagnose and treat numerous diseases. In gastroenterology, endoscopies of the upper gastrointestinal tract (esophagus, stomach, first part of the small intestine; upper GI endoscopies) and lower gastrointestinal... -
Low-Cost Tactile Displays for the Blind and Visually Impaired
Age-related medical conditions are responsible for most cases of blindness and visual impairment worldwide. In 2015, there were an estimated 36 million blind people in the world, with an additional 217 million suffering from moderate to severe vision impairment. Over 80% of the visually impaired were older than 50, and this percentage is expected to... -
Smart Tools: RFID Tracking for Surgical Instruments
Surgeons can use up to 250 different tools during a surgical procedure to perform tasks like cutting, grasping, cauterizing, suturing, suctioning, and reducing bleeding. Each tool must be manually counted by hospital staff both before and after surgery to ensure that none of them have gone missing, which is a tedious and time-consuming process. This... -
FOAMs: Soft Robotic Artificial Muscles
Soft robots, similar to living organisms, are made from compliant materials that allow them great flexibility and adaptability for tasks at the human-robot interface and elsewhere. To enable soft robotic missions in different industrial, exploratory, and medical settings, engineers are trying to equip them with artificial muscles that could enable them to move smoothly, efficiently... -
Flexible Embedded Liquid Sensors
As we shift from carrying electronic devices in our pockets and purses to wearing them on our bodies, those devices need to be able to move and stretch with us, and to sense our movements in order to better do so. Such sensors must remain functional when stretched to several times their resting length, resist... -
Flexible Force Sensors for Microrobotics
As robots have gotten smaller, softer, and more maneuverable, they’ve opened up myriad possibilities for interacting with objects on a tiny scale, including on and in the human body. However, human hands still have a major advantage over robots: the ability to feel. Researchers at the Wyss Institute are using the Pop-Up MEMS manufacturing technique... -
Flexible Robots for Endoscopic Procedures
Endoscopes are a standard device in gastrointestinal medicine, used by surgeons to noninvasively see and take biopsies from tissues along the entire digestive tract. However, endoscopes themselves amount to hollow tubes with a camera and light attached, through which different instruments are threaded to the procedure site, and are rigid and not very maneuverable. Two... -
milliDelta: Millimeter-Scale Delta Robot
Delta robots are deployed in many industrial processes, including pick-and-place assemblies, machining, welding, and food packaging. Three individually controlled lightweight arms enable fast and accurate motion of an output platform in three directions. Roboticists have reduced the size of Delta robots for tasks in limited workspaces, but so far, using conventional manufacturing techniques and components,... -
HAMR: Versatile Crawling Microrobot
Small or difficult-to-access spaces such as areas covered with rubble, or narrow pipes and engines can pose obstacles to search-and-rescue missions, repair works, or environmental and industrial monitoring. One solution for these problems could be small-sized robots that are able to navigate such spaces, transport payload, sense, and communicate. Wyss Institute researchers have developed a... -
Soft Robotic Shoulder Support for Stroke Rehabilitation
The majority of stroke survivors have difficulty using their affected arm in everyday life. Commercial rehabilitation robots exist, but most are expensive, rigid, non-portable exoskeletons that can only be used in clinical rehabilitation settings. Portable devices could considerably increase the frequency and amount of robotic therapy, maximizing the recovery possible for patients with arm impairments.... -
RoboBees: Autonomous Flying Microrobots
Inspired by the biology of a bee, researchers at the Wyss Institute are developing RoboBees, manmade systems that could perform myriad roles in agriculture or disaster relief. A RoboBee measures about half the size of a paper clip, weighs less that one-tenth of a gram, and flies using “artificial muscles” compromised of materials that contract when... -
Pop-Up MEMS: Origami-Inspired Micromanufacturing
Recent decades have seen rapid development in the manufacture of microelectromechanical systems (MEMS) at the micrometer scale, mostly based on silicon wafer processing techniques, with characteristic length scales of millimeters to nanometers. However, standard MEMS techniques are often inappropriate for producing machines with complex 3D topologies and varied constituent materials at the mesoscale, at sizes... -
Flexi-Mitts: Neuromoter and Cognitive Ability Tracker
Advances in medical care have improved the survival of very low birth weight premature infants but at the same time have also led to an increased number of surviving infants with reduced cerebral growth and long-term neurodevelopmental motor, cognitive, and social morbidities. These complications are met by a lack of early assessment tools for diagnosing...