Multimedia search results
38 Results for ''
-
Video/AnimationA Laser Steering Device for Robot-Assisted SurgeryResponding to an unmet need for a robotic surgical device that is flexible enough to access hard to reach areas of the G.I. tract while causing minimal peripheral tissue damage, Researchers at the Wyss Institute and Harvard SEAS have developed a laser steering device that has the potential to improve surgical outcomes for patients. Credit:...
-
Video/AnimationInterrogator: Human Organ-on-ChipsThis video describes the “Interrogator” instrument that can be programmed to culture up to 10 different Organ Chips and sequentially transfer fluids between their vascular channels to mimic normal human blood flow between the different organs of our body. Its integrated microscope enables the continuous monitoring of the tissues’ integrities in the individual organ chips...
-
Audio/PodcastDisruptive: 3D BioprintingThere are roughly 120,000 people in the United States on waiting lists for live-saving organ transplants, with only about 30,000 transplants happening every year. To address this great challenge of organ shortages, a team at the Wyss Institute led by Core Faculty member Jennifer Lewis, Sc.D., is developing a method for 3D bioprinting organ tissues...
-
Video/AnimationA Swifter Way Towards 3D-printed Organs20 people die waiting for an organ transplant every day in the US, but lab-grown organs so far lack the cellular density and functions required to make them viable replacements. The new SWIFT method from the Wyss Institute and Harvard SEAS solves those problems by 3D printing vascular channel networks directly into living tissue constructs,...
-
Video/AnimationHAMR-E: Inverted and Vertical Climbing MicrorobotHAMR-E, created in collaboration with Rolls-Royce, is a micro-robot that uses electroadhesion to scale vertical, inverted, and curved surfaces, allowing it to explore spaces that are too small for humans. HAMR-E could one day be used to inspect jet engines and other complicated machines without requiring them to be taken apart. Credit: Wyss Institute at...
-
Video/AnimationNanofiber-Reinforced Micro-ActuatorsThis video explains how two fabrication techniques, soft lithography and rotary jet spinning of nanofibers, are combined to create a new type of micro-actuator for the manipulation of small fragile objects in challenging environments. Credit: Wyss Institute at Harvard University
-
Video/AnimationRolls-Royce and SWARM RobotsTiny SWARM robots are part of Rolls-Royce’s IntelligentEngine vision, and could one day revolutionize the way they maintain jet engines. Listen to the Wyss Institute’s Sebastien de Rivas explain the technology behind them.
-
Video/AnimationMORPH: A new soft material microfabrication processWhat has the ability to move and show its colors, is made only of silicone rubber and manufactured at the millimeter scale? A soft robotic peacock spider. Researchers have combined three different manufacturing techniques to create a novel origami-inspired soft material microfabrication process that goes beyond what existing approaches can achieve at this small scale....
-
Video/AnimationHAMR: Robotic Cockroach for Underwater ExplorationsThis video shows how the HAMR can transition from land to water, paddle on the surface of water, or sink to the ground to start walking again just as it would on dry land. Credit: Yufeng Chen, Neel Doshi, and Benjamin Goldberg/Harvard University
-
Video/AnimationMeet HAMR, the Cockroach-Inspired RobotThe Harvard Ambulatory Microrobot - nicknamed HAMR - is a versatile robot that can run at high speeds, jump, climb, turn sharply, carry payloads and fall from great distances without being injured.
-
Video/AnimationThe milliDelta RobotDelta Robots are comprised of three articulating arms connected to an output stage. They are extremely precise and agile, and can be used for “pick & place” and 3D Printing. Researchers at the Wyss Institute and Harvard SEAS have developed a millimeter-scale delta robot, the “milliDelta.” Possible applications at this scale include microassembly, micromanipulation, and...
-
Video/AnimationNew Wyss Institute Initiative – 3D Organ EngineeringWyss Institute Core Faculty members Christopher Chen and Jennifer Lewis describe the Wyss Institute’s new initiative focused on organ engineering, which leverages our expertise in biomaterials, tissue engineering, three dimensional biofabrication, and stem cell development.
-
Video/AnimationTherapeutic Organ Engineering: Highlights From The 8th Annual Wyss SymposiumThe 8th Annual Wyss International Symposium focused on innovations in therapeutic organ engineering, featuring diverse speakers doing exciting work in 3D organ engineering, materials fabrication, and vascular integration. This video highlights some of the themes discussed in their presentations as well as the advances that are leading to the ultimate goals of developing new approaches...
-
Audio/PodcastDisruptive: Cancer Vaccine and Immuno-MaterialsImmunotherapy – treatment that uses the body’s own immune system to help fight disease – has groundbreaking and life-saving implications. In an effort to make immunotherapy more effective, Wyss Institute researchers are developing new immuno-materials, which help modulate immune cells to treat or diagnose disease. In this episode of Disruptive, Dave Mooney, Wyss Core Faculty...
-
Video/Animation8th Annual Wyss Institute Symposium: Therapeutic Organ EngineeringScreened just before the symposium opening, this animation artistically connects concepts of therapeutic organ engineering presented during the event. Credit: Wyss Institute at Harvard University
-
Video/AnimationWyss Focus: Immuno-MaterialsWyss Core Faculty, Dave Mooney, explains our new Immuno-Materials Focus Area, which adds a new dimension to immunotherapy in that it harnesses materials to make treatments more efficient and effective. These material-based systems are capable of modulating immune cells and releasing them into the body where they can treat diseases.
-
Video/AnimationArtScience Talks @ Le Lab – Seeing Is Believing: Therapeutic Cancer VaccinesWyss Core Faculty member David Mooney presents a talk with Mary Mooney, titled Seeing Is Believing: Therapeutic Cancer Vaccines. Marshaling a patientÍs immune system to recognize and destroy cancerous cells is an exciting strategy to attack cancer, and this talk will explore materials that engage the immune system through science and artistic representation. Mary K....
-
Video/Animation3D Printed Heart-on-a-ChipIn this video, learn how Wyss Institute and Harvard SEAS researchers have created a 3D-printed heart-on-a-chip that could lead to new customizable devices for short-term and long-term in vitro testing. Credit: Johan U. Lind (Disease Biophysics Group), Alex D. Valentine and Lori K. Sanders (Lewis Lab)/Harvard University
-
Video/AnimationBioprinting: The Kidney’s Proximal TubulesIn this video, see how the Wyss Institute team has advanced bioprinting to the point of being able to fabricate a functional subunit of a kidney. Credit: Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 1)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 3)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 2)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Video/AnimationBioinspired Robotics: Softer, Smarter, SaferThe Bioinspired Robotics platform at HarvardÍs Wyss Institute for Biologically Inspired Engineering looks into Nature to obtain insights for the development of new robotic components that are smarter, softer, and safer than conventional industrial robots. By looking at natural intelligence, collective behavior, biomechanics, and material properties not found in manmade systems, scientists at the Wyss...
-
Audio/PodcastScience, Your Body, And TestingIn 2015 the London Design Museum announced it’s “Design of the Year” award, and for the first time it went to a Medical design. The Wyss Institute for Biologically Inspired Engineering at Harvard University’s “Organs-on-chips” was the overall winner. The chips mimic the functions of human organs for the purpose of medical testing. This broadcast...
-
Video/AnimationPopup Challenge: Help Revolutionize Popup RoboticsJoin the Wyss Institute Popup Challenge, a design contest based around the laminate design techniques outlined at popupcad.org. We hope to grow the community of people who can design, build, and operate laminate devices and micromechanisms. If you are a student considering using popups for a class project, a researcher who has an application for...
-
Video/AnimationHuman Organs-On-ChipsWyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each individual organ-on-chip is composed of a clear flexible polymer...
-
Video/AnimationKilobots: A Thousand-Robot SwarmIn this video, Kilobots self-assemble in a thousand-robot swarm. The algorithm developed by Wyss Institute Core Faculty member Radhika Nagpal that enables the swarm provides a valuable platform for testing future collective Artificial Intelligence (AI) algorithms. Credit: Harvard School of Engineering and Applied Sciences.
-
Video/AnimationDynamic Daylight Redirection SystemThis video shows Keojin Jin conducting a shoebox test that shows the light reflection effect to the top surface of the box as well as the reduction of direct light to the bottom surface of the box. Credit: Wyss Institute at Harvard University
-
Video/AnimationMeTro HydrogelsAn international team led by the Wyss Institute recently used microfabrication techniques to design a new micropatterned hydrogel that shows great promise for tissue engineering — cardiac tissue in particular. It incorporates an elastic protein called tropoelastin, which is found in all elastic human tissues. The Wyss Institute’s Ali Khademhosseini discusses the research. Credit: Wyss...
-
Video/AnimationRoboBee: Controlled flight of a robotic insectInspired by the biology of a fly, with submillimeter-scale anatomy and two wafer-thin wings that flap at 120 times per second, robotic insects, or RoboBees, achieve vertical takeoff, hovering, and steering. The tiny robots flap their wings using piezoelectric actuators — strips of ceramic that expand and contract when an electric field is applied. Thin...
-
Video/AnimationResearchers mimic pulmonary edema in Lung-on-a-ChipThe Wyss Institute’s human breathing lung-on-a-chip, made using human lung and blood vessel cells, acts much like a lung in a human body. A vacuum re-creates the way the lungs physically expand and contract during breathing. As reported in Science Translational Medicine on November 7, 2012, Wyss researchers have now mimicked a human disease –...
-
Audio/PodcastBuilding Organs, On One Microchip At A TimeBuilding Organs, On One Microchip At A Time was originally broadcast on NPR on July 29, 2012. This story features Wyss Core Faculty member Don Ingber. Original broadcast story can be found here.
-
Audio/PodcastBuilding an Organ on a ChipProduced for MIT Technology Review by Kyanna Sutton and Susan Young, this audio segement features Wyss Institute Core Faculty member Don Ingber speaking about how cells grown on the Wyss Institute’s organ-on-chip devices behave more like cells in the body. The devices could improve the speed and success of drug discovery and reduce animal testing....
-
Video/AnimationSLIPS‘SLIPS’ technology, inspired by the slippery pitcher plant that repels almost every type of liquid and solid, is a unique approach to coating industrial and medical surfaces that is based on nano/microstructured porous material infused with a lubricating fluid. By locking in water and other fluids, SLIPS technology creates slick, exceptionally repellent and robust self-cleaning...
-
Video/AnimationSLIPS: Keeping Ice AwayWhat if we could design surfaces that prevent ice formation? ‘SLIPS’ technology, inspired by the slippery pitcher plant that repels almost every type of liquid and solid, is a unique approach to coating industrial and medical surfaces that is based on nano/microstructured porous material infused with a lubricating fluid. By locking in water and other...
-
Video/AnimationIntroduction to Sepsis DiagnosticWhat if we could diagnose sepsis in just hours, not days? Wyss Institute researchers discuss their approach to a rapid sepsis diagnostic. Credit: Wyss Institute at Harvard University
-
Video/AnimationIntroduction to Organs-on-a-ChipWhat if we could test drugs without animal models? Wyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each...
-
Video/AnimationLung-on-a-ChipCombining microfabrication techniques with modern tissue engineering, lung-on-a-chip offers a new in vitro approach to drug screening by mimicking the complicated mechanical and biochemical behaviors of a human lung. This extended version of the video includes our findings when we mimicked pulmonary edema on the chip. Credit: Wyss Institute at Harvard University