Technologies search results
13 Results for ''
-
Metabolically Labeled CAR-T Cells Against Cancer
Through a simple and effective metabolic labeling approach, patient-derived T cells engineered to carry immune-enhancing cytokines on their surfaces could help expand adoptive T cell therapies to treatment of solid tumors and improve blood cancer therapies. -
DoriVac: Boosting Antigen-specific Immune Responses with DNA Origami-Based Vaccines
Personalized cancer and infectious disease vaccine platform harnessing DNA nanotechnology to control the co-delivery and co-presentation of tumor antigen and adjuvant ligands to immune cells with nanoscale precision. This approach has potential to trigger enhanced immune responses against tumors and infectious pathogens. -
SomaCode: Getting Cell Therapies Where They Need to Go
SomaCode is solving the problem of cell therapy delivery by identifying unique molecular “zip codes” for disease and engineering cells to home to those zip codes, making cell therapies safer and more effective. -
Cellular “Backpacks” to Slow Tumor Growth
A cell therapy innovation that keep macrophages activated against cancer. Macrophages are like little soldiers in our bodies that help fend off diseases like cancer. Our cellular “backpacks” are disc-shaped nanoparticles that can stick to a macrophage without being engulfed, and release a steady stream of cytokines into their macrophage “hosts” to help them fight against cancer. -
FcMBL: Broad-Spectrum Pathogen Capture for Infectious Disease Diagnosis and Therapy
The Problem Infectious diseases have plagued humanity for millennia, and the pathogens that infect and sicken humans are constantly evolving. Severe infections can cause sepsis, a life-threatening condition in which a patient’s immune system overreacts to the infection. The body starts to attack itself, which can lead to tissue damage, organ failure, and death. Sepsis... -
Biomaterial Scaffolds for T Cell Expansion
Immunotherapy, or tweaking the body’s own immune system to treat disease, is attracting significant attention in the medical field for its potential to offer long-lasting cures with fewer side effects than chemotherapy or other drugs. One type of immunotherapy involves isolating T cells (a type of white blood cell) from a patient’s body, sometimes modifying... -
Implantable Cancer Vaccine
The implantable cancer vaccine is an aspirin-sized disc that is implanted under the skin and serves as an artificial lymph node, recruiting and training a patient's own immune cells to find and kill their cancer cells. It was validated in a Phase I clinical trial at the Wyss Institute, and is currently being developed by Novartis to treat melanoma. -
Microfluidic Drug Encapsulation
Because of their large molecular sizes and properties, biologic drugs, be it in the form of monoclonal antibodies that target disease-associated molecules or active proteins and enzymes that may correct deficiencies in the human body, have proven difficult to deploy in many cases. Their therapeutic effects on target cells and tissues often require high and... -
T Cell Traps
T cells, a subtype of white blood cells, play key roles in cell-mediated immunity, be it to fight infections and cancer or, when corrupted, to react against the body’s own cells in more than 80 autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and others. However, isolating disease-related T cells from the body... -
Fusion Proteins for Reduced Drug Toxicity
Therapeutic variants of the natural hormone erythropoietin (EPO) which is produced in the kidney to boost the production of red blood cells are commonly used to treat anemias stemming from kidney disease, chemotherapy and other complications. However, many drugs that are based on therapeutic proteins, including EPO, often cause unwanted side effects because they not... -
FISSEQ: Fluorescent In Situ Sequencing
Working copies of active genes — called messenger RNAs or mRNAs —translate the genetic information present in DNA into proteins within the cells’ multiple compartments. They are often positioned strategically within cells in ways that contribute critically to how cells and tissues grow, develop and function, and their mislocation can lead to disease development. To... -
NanoRx: Mechanically-Activated Drug Targeting
The Wyss team has developed a novel drug targeting nanotechnology that is activated locally by mechanical forces, either endogenous high shear stresses in blood created by vascular occlusion or mechanical energy applied locally using low-energy ultrasound radiation. Today, vascular blockage is the leading cause of death and disability in United States and Europe. Current therapies... -
Human Organs-on-Chips
Organ Chips are microfluidic devices lined with living human cells for drug development, disease modeling, and personalized medicine. Launched in 2014, Wyss startup Emulate, Inc., is leveraging the Wyss Institute’s Organ Chip technology to mimic human organs in vitro, enabling faster, better, and cheaper drug development and insights into human health.