Technology Area: Nanodevices
128 Results for 'Nanodevices'
- Technologies (9)
- Collaborations (1)
- Team (0)
- News (95)
- Pages (0)
- Multimedia (23)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 9
-
DNA Nanoswitch Calipers for Single-Molecule Proteomics
DNA nanoswitch calipers are a first-of-their-kind research tool that leverage DNA’s unique molecular qualities to study post-translational modifications on proteins to unlock a new frontier of medicine. -
DNA Nanostructures for Drug Delivery
Researchers at the Wyss Institute have developed two methods for building arbitrarily shaped nanostructures using DNA, with a focus on translating the technology towards nanofabrication and drug delivery applications. One proprietary nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program... -
Sugar-to-Fiber Enzyme for Healthier Food
In collaboration with Kraft Heinz, our sugar-to-fiber product can convert sugar in food products into prebiotic fiber in the human gut, reducing the amount of sugar absorbed into the bloodstream without altering the amount of sugar in existing food product recipes. -
DNA Nanotechnology Tools: From Design to Applications
A suite of diverse, multifunctional DNA nanotechnological tools with unique capabilities and potential for a broad range of clinical and biomedical research areas. Our DNA nanotechnology devices were engineered to overcome specific bottlenecks in the development of new therapies and diagnostics, and to help further our understanding of molecular structures. -
Biomaterial Scaffolds for T Cell Expansion
Immunotherapy, or tweaking the body’s own immune system to treat disease, is attracting significant attention in the medical field for its potential to offer long-lasting cures with fewer side effects than chemotherapy or other drugs. One type of immunotherapy involves isolating T cells (a type of white blood cell) from a patient’s body, sometimes modifying... -
Toehold Switches for Synthetic Biology
The burgeoning field of synthetic biology is designing artificial gene circuits that recognize molecules in their environment and respond by regulating genes with desired activities. In the future, such capabilities could allow the engineering of cells as diagnostic or therapeutic devices, factories for the production of clinically or industrially coveted molecules, and as specialized devices...
Collaborations 1
News 95
Multimedia 23
-
Audio/PodcastMaking Sugar Healthier – DDN DialoguesWith some out-of-the-box engineering, researchers have developed a nature-inspired strategy to turn sugar in packaged foods into gut-healthy fiber. This podcast features Director of Business Development, Sam Inverso, Ph.D., and Senior Engineer Adama Sesay, Ph.D., along with Judith Moca and John Topinka from Kraft-Heinz. This episode was created and is owned by Drug Discovery News,...
-
Video/AnimationSeed-dependent crisscross DNA-origami slatsThis animation explains how the newly invented crisscross origami method can be used to build functionalized micron-scale DNA megastructures composed of many unique DNA origami “slats,” each with their own complexity and interactive properties. Credit: Wyss Institute at Harvard University
-
Video/AnimationDNA Nanoswitch CalipersThe world’s tiniest ruler for biomolecules has been created by researchers at the Wyss Institute at Harvard University, Harvard Medical School, and Boston Children’s Hospital. DNA Nanoswitch Calipers can measure very small peptides to better understand their structure and function, and enable them to be quickly identified in mixed samples. These insights could lead to...
-
Video/AnimationLighting up proteins with Immuno-SABERThis animation explains how Immuno-SABER uses the Primer Exchange Reaction (PER) to enable the simultaneous visualization of multiple proteins in tissues in different applications. Credit: Wyss Institute at Harvard University.
-
Video/AnimationLight-driven fine chemical production in yeast biohybridsWyss Institute Core Faculty member Neel Joshi explains the concept of yeast biohybrids and how they can be used to harvest energy from light to drive the production of fine chemicals. Credit: Wyss Institute at Harvard University
-
Video/AnimationPrimer Exchange ReactionIn this video, Jocelyn Kishi illustrates how Primer Exchange Reaction (PER) cascades work to autonomously create programmable long single-stranded DNA molecules. Credit: Wyss Institute at Harvard University.