Technologies search results
14 Results for ''
-
DoriVac: DNA Origami-Based Vaccines for Combination Immunotherapy
Personalized cancer and infectious disease vaccine platform harnessing DNA nanotechnology to control the co-delivery and co-presentation of tumor antigen and adjuvant ligands to immune cells with nanoscale precision. This approach has potential to trigger enhanced immune responses against tumors and infectious pathogens. -
Metabolically Labeled CAR-T Cells Against Cancer
Through a simple and effective metabolic labeling approach, patient-derived T cells engineered to carry immune-enhancing cytokines on their surfaces could help expand adoptive T cell therapies to treatment of solid tumors and improve blood cancer therapies. -
NodeTX: Growing lymph nodes to treat cancer
NodeTX is a novel immunotherapy that leverages the human body's innate ability to grow lymph nodes to fight tumors. -
Immunostimulatory RNA Therapeutic for Treatment of Cancer and Infectious Disease
Our novel dsRNAs stimulate the immune system to inhibit cancer, bacterial, and viral infections including SARS-CoV-2 and multiple influenza strains. -
Cellular “Backpacks” to Fight Cancer, Autoimmune Disorders, and More
Macrophages are very malleable immune cells, but that also means that they can be influenced by cancerous tumors and inflammatory processes. Our cellular "backpacks" stick to macrophages and can deliver molecules that keep them in their desired state for cell therapy and more. -
Tunable ECMs for more effective T cell therapies
Tunable hydrogels that enhance the efficacies of adoptively transferred immune cells during their manufacturing by mimicking target tissue biomechanics. -
SomaCode: Getting Cell Therapies Where They Need to Go
SomaCode is solving the problem of cell therapy delivery by identifying unique molecular “zip codes” for disease and engineering cells to home to those zip codes, making cell therapies safer and more effective. -
OMNIVAX: Broadly Deployable Infection Vaccine Platform
OMNIVAX is an immuno-material-based vaccine platform technology able to create safe and effective therapeutic and prophylactic vaccines against viral and bacterial threats. Its modular approach enables the rapid creation of vaccines for pathogens using known and unknown antigens. Current approaches include vaccines against some viral diseases. -
Bone Marrow-Like Scaffolds for Accelerating Immune Reconstitution
An implantable bone marrow cryogel to accelerate the full reconstitution of the immune system, including T cell immunity, in patients that received chemotherapy and a bone marrow transplant. This could provide an off-the-shelf, material-based solution for patients with severe blood disorders whose immunity is recovering only slowly after treatment. -
FcMBL: Broad-Spectrum Pathogen Capture for Infectious Disease Diagnosis and Therapy
The Problem Infectious diseases have plagued humanity for millennia, and the pathogens that infect and sicken humans are constantly evolving. Severe infections can cause sepsis, a life-threatening condition in which a patient’s immune system overreacts to the infection. The body starts to attack itself, which can lead to tissue damage, organ failure, and death. Sepsis... -
Biomaterial Scaffolds for T Cell Expansion
Immunotherapy, or tweaking the body’s own immune system to treat disease, is attracting significant attention in the medical field for its potential to offer long-lasting cures with fewer side effects than chemotherapy or other drugs. One type of immunotherapy involves isolating T cells (a type of white blood cell) from a patient’s body, sometimes modifying... -
Implantable Cancer Vaccine
The implantable cancer vaccine is an aspirin-sized disc that is implanted under the skin and serves as an artificial lymph node, recruiting and training a patient's own immune cells to find and kill their cancer cells. It was validated in a Phase I clinical trial at the Wyss Institute, and is currently being developed by Novartis to treat melanoma. -
T Cell Traps
T cells, a subtype of white blood cells, play key roles in cell-mediated immunity, be it to fight infections and cancer or, when corrupted, to react against the body’s own cells in more than 80 autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and others. However, isolating disease-related T cells from the body... -
iNodes: Implantable Lymphoid Organs for Ovarian Cancer Therapy
Over 12,000 women die of ovarian cancer every year, yet ovarian cancer receives less than 1% of research funding compared to other solid tumors. Early symptoms can often mimic less serious conditions, and delayed diagnoses mean that 80% of ovarian cancer cases are metastatic at the time of detection. For these patients, the 5-year survival...