Technologies search results
18 Results for ''
-
MyoExo: Wearable Muscle-Centric Sensors for Improved Assessment of Neurological Disorders
MyoExo is a diagnostic technology based on strain sensors that can accurately detect muscle rigidity in patients with Parkinson’s disease and other neurological disorders. Data obtained with the device continuously from patients could improve the monitoring of treatments, and therapeutic interventions. -
Wearable Technology for True Movement Quantification
WurQ combines wearable sensors, with deep learning and signal processing algorithms, to assess the amount, quality, and intensity of functional movements and strength training activities. This quantitative data enables feedback, guidance, and gamification at scale to improve users fitness routines and health. -
Single-Cell Encapsulation for Improved Cell Therapies
The Problem Mesenchymal stromal cells (MSCs) are valued for their ability to secrete compounds that modulate the body’s immune system, making them an attractive solution for existing problems with cell therapies including host-vs-graft disease and organ transplant rejections. However, MSCs are rapidly cleared from the body and can come under fire from the immune system.... -
Soft Robotic Glove for Neuromuscular Rehabilitation
The soft robotic glove helps restore lost hand function in patients with neurological conditions using inflatable chambers that gently bend and straighten the fingers repeatedly. Wyss startup Imago Rehab launched in 2021 to commercialize this technology for at-home rehabilitation of stroke survivors, and aims to expand its offerings into other areas of rehabilitation. -
PhonoGraftTM: Biomimetic Hearing-restoration Technology
PhonoGraft is an eardrum-regenerating device that enables better and longer-lasting eardrum reconstruction, reducing the need for invasive surgeries and minimizing the risk of long-term hearing loss. Wyss startup Beacon Bio was acquired by Desktop Health, a healthcare business within Desktop Metal, Inc. which is further developing this technology towards commercialization with the former Wyss startup team leading the way. -
milliDelta: Millimeter-Scale Delta Robot
Delta robots are deployed in many industrial processes, including pick-and-place assemblies, machining, welding, and food packaging. Three individually controlled lightweight arms enable fast and accurate motion of an output platform in three directions. Roboticists have reduced the size of Delta robots for tasks in limited workspaces, but so far, using conventional manufacturing techniques and components,... -
HAMR: Versatile Crawling Microrobot
Small or difficult-to-access spaces such as areas covered with rubble, or narrow pipes and engines can pose obstacles to search-and-rescue missions, repair works, or environmental and industrial monitoring. One solution for these problems could be small-sized robots that are able to navigate such spaces, transport payload, sense, and communicate. Wyss Institute researchers have developed a... -
Soft Robotic Shoulder Support for Stroke Rehabilitation
The majority of stroke survivors have difficulty using their affected arm in everyday life. Commercial rehabilitation robots exist, but most are expensive, rigid, non-portable exoskeletons that can only be used in clinical rehabilitation settings. Portable devices could considerably increase the frequency and amount of robotic therapy, maximizing the recovery possible for patients with arm impairments.... -
Focused Rotary Jet Spinning for Heart Implants
Focused rotary jet spinning (FRJS) is a manufacturing technique that can rapidly spin polymers into long fibers that are easily shaped into heart valves for treating a variety of cardiac diseases in children and adults. -
Vibrating Insoles for Better Balance
Balance in humans relies on complex feedback from the senses that govern the body’s mechanical stability. Wyss Institute and Boston University researchers have discovered that random vibrations, too gentle to be felt, can improve the sensory feedback system and may restore stability through a mechanism known as “stochastic resonance”. By incorporating vibrating elements in insoles... -
Active Mattress for Infant Health
Wyss pediatric biotech startup Prapela is commercializing a gently vibrating mattress pad that helps soothe infants and normalize their breathing. This medical device can be used to address a variety of health conditions, including infant apnea and neonatal opioid withdrawal syndrome. -
NanoRx: Mechanically-Activated Drug Targeting
The Wyss team has developed a novel drug targeting nanotechnology that is activated locally by mechanical forces, either endogenous high shear stresses in blood created by vascular occlusion or mechanical energy applied locally using low-energy ultrasound radiation. Today, vascular blockage is the leading cause of death and disability in United States and Europe. Current therapies... -
Multiplexed Molecular Force Spectroscopy
Programmable DNA nanoswitches, invented at the Wyss Institute, can now be used in combination with a benchtop Centrifuge Force Microscope (CFM) as a highly reliable tool to observe thousands of individual molecules and their responses to mechanical forces in parallel. By analyzing the responses of single molecules under conditions where they experience such forces, it is possible... -
Microfluidic Hemostasis Monitor
The body’s ability to stop bleeding, also known as hemostasis, is critical for survival. For patients with blood clotting disorders, medical conditions requiring the use of anticoagulation or antiplatelet drugs, or who require treatment with extracorporeal devices that circulate their blood outside of the body, it is essential that care providers can rapidly monitor their... -
RoboBees: Autonomous Flying Microrobots
Inspired by the biology of a bee, researchers at the Wyss Institute are developing RoboBees, manmade systems that could perform myriad roles in agriculture or disaster relief. A RoboBee measures about half the size of a paper clip, weighs less that one-tenth of a gram, and flies using “artificial muscles” compromised of materials that contract when... -
Flexi-Mitts: Neuromoter and Cognitive Ability Tracker
Advances in medical care have improved the survival of very low birth weight premature infants but at the same time have also led to an increased number of surviving infants with reduced cerebral growth and long-term neurodevelopmental motor, cognitive, and social morbidities. These complications are met by a lack of early assessment tools for diagnosing... -
Soft Exosuits for Lower Extremity Mobility
Our lower-extremity soft exosuit is made of light, flexible fabrics that move with the wearer like clothing, and apply precisely timed assistive forces to a patient's ankles to improve their walking and mobility. This technology was licensed by ReWalk Robotics, which has commercialized it as the ReStore™ for stroke rehabilitation. -
Human Organs-on-Chips
Organ Chips are microfluidic devices lined with living human cells for drug development, disease modeling, and personalized medicine. Launched in 2014, Wyss startup Emulate, Inc., is leveraging the Wyss Institute’s Organ Chip technology to mimic human organs in vitro, enabling faster, better, and cheaper drug development and insights into human health.