Technologies search results
29 Results for ''
-
Instrument-Free Molecular Diagnostics
A synthetic biology-based molecular diagnostics platform that enables the creation of low-cost, highly accurate tests for non-clinical settings. -
AminoX: Making Better Protein Drugs, Quicker and Cheaper
AminoX enables protein drugs to only become active in the tumor microenvironment and not elsewhere in the body to avoid immune-related adverse effects in the body. By designing and building non-standard amino acids into strategic positions of protein drugs, AminoX provides tumor-specific, and longer-lasting target inhibition. -
Ichor: Reversing Aging
Ichor is addressing multiple age-related diseases by identifying genetic interventions that reprogram old cells to a younger state. Therapies based on these interventions could improve survival for cancer patients and long-term cardiovascular and neurological health. -
Paper-Based Diagnostics
With the imminent threat of new pandemics and frequent disease outbreaks exemplified by the recent Ebola and Zika epidemics, there is a growing need for low-cost, easily deployable and simple-to-use diagnostic tools. The Wyss Institute has developed paper-based synthetic gene networks as a next generation diagnostic technology for use in global healthcare crises and patient... -
DNA Nanostructures for Drug Delivery
Researchers at the Wyss Institute have developed two methods for building arbitrarily shaped nanostructures using DNA, with a focus on translating the technology towards nanofabrication and drug delivery applications. One proprietary nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program... -
Lactation Biologics: Increasing Milk Production for Healthier Babies
Lactation Biologics is developing a long-lasting, self-injectable treatment to help nursing mothers feed their babies naturally, helping them get the best nutrition possible in the face of climate disasters and supply chain disruptions. -
Plastivores: Plastic-Degrading Super-Microbes and Enzymes
The Plastic Degradation project identifies microbes from natural sources that have a low-level ability to degrade multiple types of plastic. In the laboratory, with the help of synthetic biology, those microbes then are evolved into much more effective plastic-eating microbes that, in the future, could be globally deployed to decompose plastic waste. -
Human Ovarian Organoids to Improve Women’s Health
Gameto is using the Wyss Institute’s fully human ovarian organoid technology to solve the global problem of rising infertility by making IVF safer, cheaper, and more accessible. -
eRNA: Enzymatic RNA synthesis for better drugs
EnPlusOne Biosciences is enabling RNA oligonucleotide manufacturing at scale, meeting the increasing demand for RNA drugs with an enzymatic process that is more efficient and creates a smaller environmental footprint. -
Sparkle: Instant Biosensors for Real-Time Imaging
Sparkle is revolutionizing the binder assay industry by harnessing novel chemistry to create instant fluorescent biosensors for a wide variety of uses. -
Pancreatitis Tx: An Engineered Protein Treatment for Pancreatitis
First disease-modifying therapy that can be systemically applied to safely and effectively treat patients with different forms of pancreatitis. -
HarborSite: Precise and Efficient Gene Editing for Next-Generation Gene Therapies
The HarborSite next-generation gene therapy platform enables integration of therapeutic genes into genomic safe harbors using highly specific and efficient recombinases to enable more predictable, safe and durable gene therapies. -
CircaVent: A Drug Discovery Platform for Mental Health Conditions
CircaVent is a novel drug discovery platform that combines predictive algorithms, high-throughput preclinical models, and human organoids to identify and test drugs that could treat mental health conditions like bipolar disorder. -
Biotechnology for Conservation and De-Extinction
Colossal Biosciences is leveraging a suite of technologies including genome engineering to de-extinct critical species like the wooly mammoth to advance conservation to combat biodiversity loss. -
SomaCode: Getting Cell Therapies Where They Need to Go
SomaCode is solving the problem of cell therapy delivery by identifying unique molecular “zip codes” for disease and engineering cells to home to those zip codes, making cell therapies safer and more effective. -
MRBL: Next-Generation Gene Therapy for Molecular Skin Rejuvenation
The next-generation gene therapy for molecular skin rejuvenation combines a comprehensive target gene prediction with a novel transdermal delivery approach for therapeutic adenovirus-associated viruses. The platform targets monogenic disease indications in the skin, and extends the same targets to the treatment of common skin aging conditions. -
Circe: Transforming greenhouse gases into valuable products with microbes
Circe Bioscience is using gas fermentation to produce valuable materials including fats, oils, and fuels from greenhouse gases using engineered microbes. -
Multiplexed Protein Binding and Barcoding Platform for Drug Development
Manifold Bio is commercializing an end-to-end drug discovery and development platform to improve the efficiency of protein therapeutic creation. -
Athlete-Derived Probiotics
FitBiomics is commercializing probiotic supplements based on unique combinations of microbes found in elite athletes’ guts to help optimize the health and function of all humans. -
Synthetic Adeno-Associated Virus (AAV) Capsids for Advanced Gene Therapy
Dyno Therapeutics is aiming to become a leading gene therapy delivery partner for companies in this space, and to enable a new generation of more effective, safer gene therapies by harnessing optimized AAV capsids. -
Toehold Switches for Synthetic Biology
The burgeoning field of synthetic biology is designing artificial gene circuits that recognize molecules in their environment and respond by regulating genes with desired activities. In the future, such capabilities could allow the engineering of cells as diagnostic or therapeutic devices, factories for the production of clinically or industrially coveted molecules, and as specialized devices... -
Toehold Probes for Nucleic Acid Detection
The accurate detection of specific DNA or RNA sequences is important for many research and diagnostic applications, and unspecific detection of similar sequences that can differ by only a single nucleotide can give false positive results. In addition, researchers and clinicians would like to accurately test for presence or absence of multiple single base changes... -
Engineered Pig Organs for Human Transplant
eGenesis is working toward ending the global transplant shortage and transforming the treatment of organ failure by using CRISPR to edit the pig genome to make their organs safe for transplant in human patients. -
Engineered Brain Organoids
The ability to derive and manipulate pluripotent stem cells has opened up new avenues for modeling biological systems in both healthy and diseased conditions. In order to more fully recapitulate the tissue microenvironment with its cell-cell, cell-extracellular matrix, and cell-niche interactions, it is essential to transition stem-cell culturing from monolayers to 3D structures. Self-organization of... -
Gene Drives
Since the 1940s, researchers have thought of using gene drives to eradicate populations of pests and disease vectors, and to reduce or eliminate invasive species that wreak havoc on natural ecosystems. The idea of a gene drive stems from nature itself, where in sexually reproducing organisms a certain version of a gene is preferentially passed... -
Targeted EPO: Safely Normalizing Oxygen Delivery in a Broad Range of Disease Conditions
General Biologics commercializes Targeted EPO as a first-in-class fusion protein therapeutic for the treatment of life-threatening and limiting hypoxia in various disease conditions, including COPD, cystic fibrosis, COVID-19, and severe anemias, such as in patients with kidney failure. -
FISSEQ: Fluorescent In Situ Sequencing
Working copies of active genes — called messenger RNAs or mRNAs —translate the genetic information present in DNA into proteins within the cells’ multiple compartments. They are often positioned strategically within cells in ways that contribute critically to how cells and tissues grow, develop and function, and their mislocation can lead to disease development. To... -
DNA Data Storage
The genetic material DNA has garnered considerable interest as a medium for digital information storage because its density and durability are superior to those of existing silicon-based storage media. For example, DNA is at least 1000-fold more dense than the most compact solid-state hard drive and at least 300-fold more durable than the most stable... -
MAGE: Multiplex Automated Genomic Engineering
Developed at the Wyss Institute, the multiplex automated genome engineering (MAGE) technology harnesses the natural principles of evolution to do all the heavy lifting of genome design and automates these steps to dramatically shorten the time scale required to produce microbes with specialized functionalities for manufacturing, sensing and therapeutic applications. Genome engineering has a wide...