Technologies search results
30 Results for ''
-
DNA Nanoswitch Calipers for Single-Molecule Proteomics
DNA nanoswitch calipers are a first-of-their-kind research tool that leverage DNA’s unique molecular qualities to study post-translational modifications on proteins to unlock a new frontier of medicine. -
Ropirio: Novel Treatments Targeting the Lymphatic System
Ropirio is commercializing the world’s first drug that directly targets and reactivates lymph vessels, a portfolio of other lymph-targeting small molecules, and a preclinical platform for discovering more. -
AminoX: Making Better Protein Drugs, Quicker and Cheaper
AminoX enables protein drugs to only become active in the tumor microenvironment and not elsewhere in the body to avoid immune-related adverse effects in the body. By designing and building non-standard amino acids into strategic positions of protein drugs, AminoX provides tumor-specific, and longer-lasting target inhibition. -
DNA Nanostructures for Drug Delivery
Researchers at the Wyss Institute have developed two methods for building arbitrarily shaped nanostructures using DNA, with a focus on translating the technology towards nanofabrication and drug delivery applications. One proprietary nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program... -
DNA Nanoswitches: “Lab-on-a-Molecule” Drug Discovery
The Lab-on-a-Molecule platform leverages the Wyss Institute’s DNA nanotechnology technology for the high-throughput, low-cost screening of a wide range of chemical and biologic compounds to enable the discovery of first-in-class therapeutics for various conditions. -
Lactation Biologics: Increasing Milk Production for Healthier Babies
Lactation Biologics is developing a long-lasting, self-injectable treatment to help nursing mothers feed their babies naturally, helping them get the best nutrition possible in the face of climate disasters and supply chain disruptions. -
eRNA: Enzymatic RNA synthesis for better drugs
EnPlusOne Biosciences is enabling RNA oligonucleotide manufacturing at scale, meeting the increasing demand for RNA drugs with an enzymatic process that is more efficient and creates a smaller environmental footprint. -
Sparkle: Instant Biosensors for Real-Time Imaging
Sparkle is revolutionizing the binder assay industry by harnessing novel chemistry to create instant fluorescent biosensors for a wide variety of uses. -
Pancreatitis Tx: An Engineered Protein Treatment for Pancreatitis
First disease-modifying therapy that can be systemically applied to safely and effectively treat patients with different forms of pancreatitis. -
HarborSite: Precise and Efficient Gene Editing for Next-Generation Gene Therapies
The HarborSite next-generation gene therapy platform enables integration of therapeutic genes into genomic safe harbors using highly specific and efficient recombinases to enable more predictable, safe and durable gene therapies. -
CogniXense for Rare Disease Drug Discovery
Unravel Biosciences has licensed a Wyss drug discovery platform technology to identify and create drugs to treat complex central nervous system disorders, starting with Rett syndrome. -
CircaVent: A Drug Discovery Platform for Mental Health Conditions
CircaVent is a novel drug discovery platform that combines predictive algorithms, high-throughput preclinical models, and human organoids to identify and test drugs that could treat mental health conditions like bipolar disorder. -
SPEAR: Ultrasensitive Protein Detection in Small Samples
Spear Bio uses a DNA nanotechnology-driven approach developed at the Wyss Institute that allows the sensitive detection of protein biomarkers in small samples using standard instruments to create new research and diagnostic assays. An ultra-sensitive assay detecting neutralizing antibodies against SARS-CoV-2 will be the first to be commercialized. -
SomaCode: Getting Cell Therapies Where They Need to Go
SomaCode is solving the problem of cell therapy delivery by identifying unique molecular “zip codes” for disease and engineering cells to home to those zip codes, making cell therapies safer and more effective. -
Rapid Metabolite-Sensing System for Blood Lactate
In emergency medicine, blood lactate levels are a reliable real-time indicator of the severity and mortality risk of conditions that occur as a result of poor blood circulation and oxygen supply to organs and tissues (hypoperfusion), such as in patients with sepsis, cardiac arrest, stroke, major trauma, cystic fibrosis and other conditions. Lactate levels also... -
DNA Nanotechnology Tools: From Design to Applications
A suite of diverse, multifunctional DNA nanotechnological tools with unique capabilities and potential for a broad range of clinical and biomedical research areas. Our DNA nanotechnology devices were engineered to overcome specific bottlenecks in the development of new therapies and diagnostics, and to help further our understanding of molecular structures. -
Multiplexed Protein Binding and Barcoding Platform for Drug Development
Manifold Bio is commercializing an end-to-end drug discovery and development platform to improve the efficiency of protein therapeutic creation. -
CogniXense: A Platform for Rapid Drug Repurposing
CogniXense is a target-agnostic drug discovery platform that enables the repurposing of drugs for rare genetic diseases in record time. By combining human data-based computational drug prediction with on-demand animal model development, we can mimic the diversity of symptoms of patient populations and begin drug screening on new diseases within a month. -
abbieSense: Anaphylaxis Diagnostic
The molecule histamine plays a primary role in the anaphylaxis reaction, which is a major cause of illness and death in people with severe allergies. Histamine is a very small molecule composed of only seventeen atoms, making it a challenging target to detect. To date, no diagnostic test exists that can measure histamine levels accurately... -
Biomaterial Scaffolds for T Cell Expansion
Immunotherapy, or tweaking the body’s own immune system to treat disease, is attracting significant attention in the medical field for its potential to offer long-lasting cures with fewer side effects than chemotherapy or other drugs. One type of immunotherapy involves isolating T cells (a type of white blood cell) from a patient’s body, sometimes modifying... -
Toehold Switches for Synthetic Biology
The burgeoning field of synthetic biology is designing artificial gene circuits that recognize molecules in their environment and respond by regulating genes with desired activities. In the future, such capabilities could allow the engineering of cells as diagnostic or therapeutic devices, factories for the production of clinically or industrially coveted molecules, and as specialized devices... -
Toehold Probes for Nucleic Acid Detection
The accurate detection of specific DNA or RNA sequences is important for many research and diagnostic applications, and unspecific detection of similar sequences that can differ by only a single nucleotide can give false positive results. In addition, researchers and clinicians would like to accurately test for presence or absence of multiple single base changes... -
Microfluidic Drug Encapsulation
Because of their large molecular sizes and properties, biologic drugs, be it in the form of monoclonal antibodies that target disease-associated molecules or active proteins and enzymes that may correct deficiencies in the human body, have proven difficult to deploy in many cases. Their therapeutic effects on target cells and tissues often require high and... -
Targeted EPO: Safely Normalizing Oxygen Delivery in a Broad Range of Disease Conditions
General Biologics commercializes Targeted EPO as a first-in-class fusion protein therapeutic for the treatment of life-threatening and limiting hypoxia in various disease conditions, including COPD, cystic fibrosis, COVID-19, and severe anemias, such as in patients with kidney failure. -
FISSEQ: Fluorescent In Situ Sequencing
Working copies of active genes — called messenger RNAs or mRNAs —translate the genetic information present in DNA into proteins within the cells’ multiple compartments. They are often positioned strategically within cells in ways that contribute critically to how cells and tissues grow, develop and function, and their mislocation can lead to disease development. To... -
NanoRx: Mechanically-Activated Drug Targeting
The Wyss team has developed a novel drug targeting nanotechnology that is activated locally by mechanical forces, either endogenous high shear stresses in blood created by vascular occlusion or mechanical energy applied locally using low-energy ultrasound radiation. Today, vascular blockage is the leading cause of death and disability in United States and Europe. Current therapies... -
Multiplexed Molecular Force Spectroscopy
Programmable DNA nanoswitches, invented at the Wyss Institute, can now be used in combination with a benchtop Centrifuge Force Microscope (CFM) as a highly reliable tool to observe thousands of individual molecules and their responses to mechanical forces in parallel. By analyzing the responses of single molecules under conditions where they experience such forces, it is possible... -
Injectable Hydrogels for Better Drug Delivery
Wyss researchers have developed a new approach to delivering drugs and therapeutic cells using biocompatible and biodegradable hydrogels made of alginate, a naturally occurring polysaccharide from brown algae. Injectable hydrogels could greatly improve clinical ability to provide extended drug release and controlled delivery throughout the body or at targeted local sites. The method holds promising... -
Inexpensive Super-Resolution Microscopy
Wyss Institute scientists have developed a highly versatile and inexpensive microscopic imaging platform designed to visualize objects with molecular-scale resolution and unprecedented complexity. The DNA-powered imaging technology can reveal the inner workings of cells at the single molecule level, using conventional microscopes found in most laboratories. Key to the Wyss Institute’s DNA-driven imaging super resolution... -
Human Organs-on-Chips
Organ Chips are microfluidic devices lined with living human cells for drug development, disease modeling, and personalized medicine. Launched in 2014, Wyss startup Emulate, Inc., is leveraging the Wyss Institute’s Organ Chip technology to mimic human organs in vitro, enabling faster, better, and cheaper drug development and insights into human health.