Multimedia search results
79 Results for ''
-
Video/AnimationDeep-dive Molecular Blueprinting of Therapeutic Nanostructures | Anastasia ErshovaAnastasia Ershova, a scientist at the Wyss, introduces the innovative field of bionanotechnology. In this talk from LabWeek Field Building, she explores how this cutting-edge science is revolutionizing therapeutics and diagnostics by building molecules that interact with the body in novel ways. Ershova discusses DNA nanotechnology, where DNA is used as a material to create...
-
Video/AnimationAminoX: Making Better Protein Drugs, Quicker and CheaperA synthetic biology and advanced chemistry platform that efficiently incorporates non-standard amino acids by hacking the ubiquitous protein synthesis process. Credit: Wyss Institute at Harvard University
-
Video/AnimationMice Don’t Menstruate: Reimagining Women’s Health Using Organ Chips with Dr. Donald IngberIn this episode, host Sharon Kedar, Co-Founder of Northpond Ventures, is joined by Dr. Donald Ingber, Founding Director at Wyss Institute for Biologically Inspired Engineering at Harvard University. Dr. Ingber’s commitment to following his passion has led him to countless medical and technological breakthroughs, including Organ Chip technology. These incredible chips recreate the structure and...
-
Video/AnimationAtlantic Health Research Spotlight: Finding Balance in Bipolar Disorder Through Drug Prediction and Organoid-Based Drug ScreeningInnovation has disrupted care as we know it. Challenges with access, complex diseases, and care delivery persist, but so do areas of opportunity for emerging tech and discoveries. The Atlantic explored gene editing, artificial intelligence, climate change, weight-loss and diabetes treatments, and more at their Annual Health Summit. The Wyss’ Director of Synthetic Biology, Jenny...
-
Video/AnimationReimagine the World – Volume 3 – Northpond EditionThe Wyss Institute’s alliance with Northpond Labs supports early-stage, transformative research with strong translation potential. Hear Northpond Ventures co-founders Michael Rubin and Sharon Kedar explain why they decided to partner with the Wyss, as well as the leaders of various Wyss projects and startups about how support from Northpond has helped accelerate their technologies to...
-
Video/AnimationHarborSite AnimationThis animation explains how the Wyss Institute’s HarborSite genome editing technology uses highly specific and efficient recombinase enzymes and genomic safe harbors to achieve more predictable, safe, and durable gene therapies. Credit: Wyss Institute at Harvard University
-
Video/AnimationEnhancing Lactation to Improve Infant and Maternal HealthLactation Biologics is developing a long-lasting, self-injectable treatment to help nursing mothers feed their babies naturally, helping them get the best nutrition possible in the face of climate disasters and supply chain disruptions. Credit: Wyss Institute at Harvard University
-
Video/AnimationGenetic & Cellular Engineering w/ David Schaffer & Samir Mitragotri – BIOS RoundtableSamir Mitragotri is a Core Faculty member at the Wyss Institute and the Hiller Professor of Bioengineering & Hansjorg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS. David Schaffer is Professor at UC Berkeley & Director at BBH. The two discuss Genetic and Cellular Engineering, with a focus on delivery challenges.
-
Video/AnimationBridging science, engineering, and art: from mechanobiology to Human Organs-on-ChipsIn this Marsilius Lecture, Wyss Founding Director Don Ingber shares his personal path from a serendipitous experience in an undergraduate art class that led to his discovery of how living cells are constructed using “tensegrity” architecture and how this contributed to the birth of the field of Mechanobiology to his more recent work on human...
-
Video/AnimationHow can we better treat brain diseases?The Brain Targeting Program at the Wyss Institute is a pre-competitive, multi-partner industry collaboration that aims to identify novel transport targets and shuttle compounds to enable more effective delivery of drugs to the brain. Credit: Wyss Institute at Harvard University
-
Audio/PodcastReimagining Infertility – An Interview with Christian KrammeChristian Kramme imagines a world where all people can have a child on their own time frame. Such “reproductive autonomy” is not the case today – infertility is a growing problem worldwide, and existing treatments like IVF are incredibly taxing on women’s bodies and too expensive for most of the global population to access. Listen...
-
Video/AnimationFeCILL: Reimagining How We Treat the Sickest PatientsOpportunistic fungal infections usually only affect patients whose immune systems are compromised, but when they do, they are often deadly – the mortality rate for these infections can be as high as 25%. Existing antifungal treatments have high levels of toxicity, and can harm the patient more than they help. Researchers at the Wyss Institute...
-
Video/AnimationMetabolic T cell Labeling: simple and effective enhancement of therapeutic T cells with immune-stimulating cytokinesThis animation shows how the surface of patient-derived T cells is metabolically labeled with azido-sugar molecules that then can be used to attach immune-enhancing cytokines with the help of click chemistry. The approach could help expand adoptive T cell therapies to treatment of solid tumors. Credit: Wyss Institute at Harvard University
-
Video/AnimationReimagining Protein Engineering Inspired by His Father: Mike SuperMike Super is a Lead Staff Scientist using protein engineering to design therapeutic and diagnostic devices to treat cancer, and infectious and immunological diseases. He also leads the Biostasis team at the Wyss. In this video, he shares his personal and professional journey that began in the deserts of Namibia shadowing his father, one of...
-
Video/AnimationReimagining Recovery and Pain Management After Her Injury: Megan SperryMegan Sperry is a Postdoctoral Fellow working on the Biostasis project to help develop therapeutics that could slow down biological time. In this video, she shares a personal story about an injury she suffered after years of figure skating and how she would Reimagine the World with better recovery outcomes and pain management after trauma....
-
Video/AnimationReimagining Neurodegenerative Disease Treatment for Her Grandfather: Mariana Garcia-CorralMariana Garcia-Corral is a Research Assistant studying brain organoids to help with the treatment of bipolar disorder. In this video, she shares a poignant personal story about her grandfather suffering from Lewy body dementia and how she would Reimagine a World with better neurodegenerative disease treatment. Credit: Wyss Institute at Harvard University
-
Video/AnimationDoriVac: Square Block DNA Origami VaccineThis animation explains how DoriVac leverages DNA origami nanotechnology and immune activators to stimulate stronger and long-lasting immune responses against cancer and potentially infectious diseases. Credit: Wyss Institute at Harvard University
-
Video/AnimationReimagine the World: Volume 1Four Wyss Institute scientists, Mariana Garcia-Corral, Pawan Jolly, Megan Sperry, and Mike Super, share how they would Reimagine the World and the personal stories that fuel their passion for the work they are doing. We’d love to hear how you would Reimagine the World! Please visit the following link to share your ideas: https://wyss.typeform.com/to/o9xM7cG1 Credit:...
-
Video/AnimationEliminating brain cancer at its source | Natalie Artzi | TEDxMITGlioblastoma is a lethal, aggressive brain cancer with a dismal median overall survival rate of 15 months, a number that has remained unchanged for decades. Treatment for this devastating disease involves surgical resection followed by chemotherapy and radiation therapy; however, tumor recurrence is inevitable as it is impossible to eliminate all tumor cells with current...
-
Audio/PodcastAnimal Free Labcast #4 – The PioneerWorld-class pioneer of biomedical research and innovation, Dr. Don Ingber, is the founding director of Harvard University’s Wyss Institute for Biologically Inspired Engineering. In 2010, Dr. Ingber developed a lung-on-a-chip – the first of its kind – and has continued to lead the field by developing numerous other organ chip models, demonstrating their ability to...
-
Video/AnimationJanus Tough Adhesives for Tendon RepairThere is a large unmet need for tendon regeneration therapies after injury. Building upon the tough gel adhesive technologies developed at the Wyss Institute at Harvard University and the Harvard School of Engineering and Applied Sciences, researchers from these institutions collaborated with a group at Novartis to create the Janus Tough Adhesives (JTAs). This two-sided...
-
Video/Animation2021 Kabiller Prize in Nanoscience and NanomedicineDavid R. Walt, a Wyss Core Faculty member, member of the faculty at Harvard Medical School in the Department of Pathology, and a Howard Hughes Medical Institute Professor, is the winner of the 2021 Kabiller Prize in Nanoscience and Nanomedicine, the world’s largest monetary award for outstanding achievement in the field of nanotechnology and its...
-
Video/AnimationeToehold: an RNA-detecting control element for use in RNA therapeutics, diagnostics and cell therapiesThis animation shows an example of an eToehold that detects and signals the presence of a specific viral RNA in a human cell. After the virus has injected its RNA into a host cell, the RNA acts as a “trigger RNA” by binding to a complementary sequence within the eToehold specifically engineered for its detection....
-
Video/AnimationInnovation Showcase – Tough Gel TechnologyJay Sugarman talks with Benjamin Freedman, PhD. Benjamin is a Postdoctoral Fellow at the Wyss Institute for Biologically Inspired Engineering at Harvard University. He’s on Innovation Showcase to inform viewers about the groundbreaking research he and some of his colleagues have been involved with related to the development of the next generation of medical-grade adhesives,...
-
Video/AnimationWyss Institute Brain Targeting ProgramThis animation explains how Wyss Institute researchers and their industry partners aim to identify novel transport targets and shuttle compounds to enable more effective delivery of drugs to the brain. Credit: Wyss Institute at Harvard University.
-
Video/AnimationPhonoGraft: Programming the eardrum to repair itselfEardrum perforations are a widespread problem affecting millions worldwide. Current standard of care is invasive, involves harvesting an autologous tissue to patch the eardrum, and often requires to revision surgeries, while hearing outcomes remain unsatisfying. What if we could program the eardrum to repair itself after injury? Researchers at the Wyss Institute, Massachusetts Eye and...
-
Video/AnimationOMNIVAX: Infection Vaccine PlatformThis video explains how OMNIVAX – an immuno-material-based vaccine technology can be used to rapidly create injectable vaccines against diverse viral and bacterial pathogens, and how the platform is used by the team to develop a vaccine against recurring urinary tract infections (UTIs) in their lead human application. Credit: Wyss Institute at Harvard University.
-
Video/AnimationBeating Back the Coronavirus: FDA-Approved Drug Repurposing PipelineWith the goal of rapidly repurposing FDA-approved drugs to treat COVID-19, the Wyss Institute is collaborating with the Frieman Lab at the University of Maryland Medical School and the tenOever Lab at the Icahn School of Medicine at Mount Sinai to establish a multidisciplinary pipeline that can rapidly predict, test, and validate potential treatments. Credit:...
-
Video/AnimationAlginate Hydrogel for AngiogenesisThis video describes how an alginate hydrogel can be used to trigger the formation of new blood vessels at an ischemic site in the body. Credit: Wyss Institute at Harvard University.
-
Video/AnimationBeating Back the CoronavirusWhen the coronavirus pandemic forced Harvard University to ramp down almost all on-site operations, members of the Wyss Institute community refocused their teams, and formed new ones, in order to fight COVID-19 on its multiple fronts. These efforts include building new pieces of personal protective equipment that were delivered to frontline healthcare workers, developing new...
-
Video/AnimationCogniXense: Speeding Up Treatments for Rare DiseasesAt the Wyss Institute, we are tackling Rett syndrome, a rare disease that affects 1 out of 9,000 children, by developing a scalable model for neurodevelopmental and cognitive diseases. This model can test drugs to see which will improve memory, learning, and behavior, with the end goal of finding effective therapies. Credit: Wyss Institute at...
-
Video/AnimationImproving Canine HealthspanA Wyss Institute technology that can treat multiple age-related diseases is now being developed by Rejuvenate Bio into a treatment for mitral valve disease and other deadly conditions in dogs, with the goal of helping man’s best friend live longer, healthier lives. Credit: Wyss Institute at Harvard University
-
Video/AnimationAAV Capsid EngineeringWyss researchers have created a high-throughput platform to generate an Adeno-associated virus 2 (AAV2) library containing 200,000 variants, each carrying a distinct mutation in the virus capsid protein. Their analysis identified capsid changes that enhanced “homing” potential to specific organs in mice and virus viability, as well as a new protein hidden in the capsid-encoding...
-
Video/AnimationTEDMED: How wearable robots are transforming human mobilityAs a patient struggling to walk after a serious accident on the drive across the country to graduate school, Kathleen O’Donnell became acutely aware of the role mobility can play in quality of life. With this new insight, Kathleen focused her studies on prosthetics and assisted devices. In her own words, “As I became more...
-
Audio/PodcastDisruptive: 3D BioprintingThere are roughly 120,000 people in the United States on waiting lists for live-saving organ transplants, with only about 30,000 transplants happening every year. To address this great challenge of organ shortages, a team at the Wyss Institute led by Core Faculty member Jennifer Lewis, Sc.D., is developing a method for 3D bioprinting organ tissues...
-
Video/AnimationSelf-regenerating bacterial hydrogels as intestinal wound patchesThis animation explains how self-regenerating bacterial hydrogels could be used as adhesive patches to help intestinal wounds heal. Credit: Wyss Institute at Harvard University.
-
Video/AnimationOrigami OrgansA multidisciplinary team of scientists, engineers, and architectural designers are developing Origami Organs that could function like artificial kidneys. Credit: Wyss Institute at Harvard University
-
Video/AnimationLiquid-Infused Tympanostomy TubesResearchers at the Wyss Institute have developed next-generation tympanostomy tubes with an innovative material design that significantly reduces biofouling, implant size, need for revision surgeries, and promotes drug delivery into the middle ear. Credit: Wyss Institute at Harvard University
-
Video/AnimationScience Nation: Engineering soft robots for paradigm shift in rehabilitationThis video was produced by the National Science Foundation: Tim Gatautis suffered a spinal cord injury in a swimming accident nearly a decade ago and he’s had to use a wheelchair ever since. Gatautis would like to be able to do more for himself, which brings him to the Wyss Institute and the Biodesign Lab...
-
Video/AnimationToehold Exchange ProbesThis animation explains how toehold probes consisting of a “probe strand” and a “protector strand” are assembled and how they leverage thermodynamic principles to allow the specific detection of a correct target sequence, or to prevent them from detecting a spurious target sequence that can differ from the correct target sequence by only a single...
-
Audio/PodcastDisruptive: Cancer Vaccine and Immuno-MaterialsImmunotherapy – treatment that uses the body’s own immune system to help fight disease – has groundbreaking and life-saving implications. In an effort to make immunotherapy more effective, Wyss Institute researchers are developing new immuno-materials, which help modulate immune cells to treat or diagnose disease. In this episode of Disruptive, Dave Mooney, Wyss Core Faculty...
-
Video/AnimationSoft Exosuit for Post-stroke Gait Re-trainingThis video explains how exosuit technology, developed at the Wyss Institute for Biologically Inspired Engineering, applied to ankle movements helps patients post-stroke regain a more normal gait. Credit: Wyss Institute at Harvard University
-
Video/AnimationHow Humans Walk…With RobotsResearchers at the Wyss Institute and Spaulding Rehabilitation Hospital shed light on how humans respond – or do not respond – to forces applied by rehabilitative robots. Credit: Wyss Institute at Harvard University
-
Video/AnimationWyss Focus: Immuno-MaterialsWyss Core Faculty, Dave Mooney, explains our new Immuno-Materials Focus Area, which adds a new dimension to immunotherapy in that it harnesses materials to make treatments more efficient and effective. These material-based systems are capable of modulating immune cells and releasing them into the body where they can treat diseases.
-
Audio/PodcastDavid and Mary Mooney: Seeing Is Believing-Therapeutic Cancer VaccinesWyss Core Faculty member David Mooney presents a talk with Mary Mooney, titled Seeing Is Believing: Therapeutic Cancer Vaccines. Marshalling a patient’s immune system to recognize and destroy cancerous cells is an exciting strategy to attack cancer, and this talk will explore materials that engage the immune system through science and artistic representation. Mary K....
-
Video/AnimationArtScience Talks @ Le Lab – Seeing Is Believing: Therapeutic Cancer VaccinesWyss Core Faculty member David Mooney presents a talk with Mary Mooney, titled Seeing Is Believing: Therapeutic Cancer Vaccines. Marshaling a patientÍs immune system to recognize and destroy cancerous cells is an exciting strategy to attack cancer, and this talk will explore materials that engage the immune system through science and artistic representation. Mary K....
-
Video/AnimationProject ABBIEProject ABBIE is inspired by the story of Abbie Benford, who succumbed to complications related to anaphylaxis just eight days before her 16th birthday. The Wyss Institute, in collaboration with Boston Children’s Hospital, is developing a wearable, non-invasive device that could sense anaphylaxis and automatically inject epinephrine in individuals who are unable to do so...
-
Video/AnimationShear-Thinning Biomaterial: Catheter InjectionThis movie shows the solid state of the shear-thinning biomaterial immediately after release from the catheter into an aqueous solution (00:04). The STB is cohesive and remains as one solid piece throughout the injection process. There is no noticeable dissolution of the STB into the solution, suggesting it is stable immediately after being discharged from...
-
Video/AnimationSmoking Human Lung Small Airway-on-a-ChipIn this video, Wyss Founding Director Donald Ingber and Technology Development Fellow Kambez Benam explain how the integrated smoking device mimics normal cigarette smoke exposure and how it can impact research into the causes of COPD and into new biomarkers and therapeutics. Credit: Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Mechanotherapeutics – From Drugs to WearablesMechanobiology reveals insights into how the body’s physical forces and mechanics impact development, physiological health, and prevention and treatment of disease. The emerging field of Mechanotherapeutics leverages these insights towards the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways...
-
Audio/PodcastDisruptive: Fluorescent In Situ SequencingDeveloped at the Wyss, FISSEQ (fluorescent in situ sequencing) is a spatial gene sequencing technology that reads and visualizes the three-dimensional coordinates of RNA and mRNAs – the working copies of genes – within whole cells and tissues. FISSEQ affords insights into biological complexity that until now have not been possible. In this episode of...
-
Video/AnimationMechanotherapeutics: From Drugs to WearablesThe Wyss Institute’s 7th annual international symposium focused on advances in the field of Mechanobiology that have resulted in the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways as a core part of their mechanism of action. Organized by...
-
Audio/PodcastDisruptive: Molecular RoboticsHow can DNA be programmed to build novel structures, devices, and robots? We have taken our understanding of DNA to another level, beginning to take advantage of some of DNA’s properties that have served nature so well, but in ways nature itself may have never pursued. Humans can now use DNA as a medium for...
-
Video/AnimationSmall Airway-on-a-Chip: Modeling COPD and AsthmaDevelopment of new therapeutics for chronic lung diseases have been hindered by the inability to study them in vitro. To address this challenge, Wyss Institute researchers used their Organ-on-a-Chip technology to produce a microfluidic ‘human lung small airway-on-a-chip.’ The device, which is composed a clear rubber material, is lined by living Human lung small airway...
-
Audio/PodcastDisruptive: Confronting SepsisIn this episode of Disruptive, Wyss Institute Founding Director Don Ingber and Senior Staff Scientist Mike Super discuss how their team developed a new therapeutic device inspired by the human spleen. This blood-cleansing approach can remove sepsis-causing pathogens from circulating blood without ever needing to know their identity. In animal studies, treatment with this device...
-
Video/AnimationPathogen-Extracting Sepsis TherapyThis video explains how sepsis induced by an overload of blood pathogens can be treated with the Wyss Institute’s improved pathogen-extracting, spleen-mimicking device. Blood is flown through a cartridge filled with hollow fibers that are coated with a genetically engineered blood protein inspired by a naturally-occurring human molecule called Mannose Binding Lectin (MBL). MBL is...
-
Video/AnimationBioinspired Robotics: Softer, Smarter, SaferThe Bioinspired Robotics platform at HarvardÍs Wyss Institute for Biologically Inspired Engineering looks into Nature to obtain insights for the development of new robotic components that are smarter, softer, and safer than conventional industrial robots. By looking at natural intelligence, collective behavior, biomechanics, and material properties not found in manmade systems, scientists at the Wyss...
-
Video/AnimationGastrointestinal Re-ProgrammingIn this animation, see an example of how genetically engineered microbes being developed by researchers at the Wyss Institute could detect and treat a wide range of gastrointestinal illnesses and conditions. Credit: Wyss Institute at Harvard University
-
Video/AnimationAntibiotic EfficacyIn this video, Wyss Institute Core Faculty member James Collins and Michael Lobritz explain how antibiotics can have vastly different effects on pathogenic bacteria and suggest potential implications for improving antibiotic treatments in infected patients. Credit: Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Synthetic BiologyWhat sorts of breakthroughs are possible by modifying an organism’s genome – something researchers are now able to do ever more cheaply and efficiently? Researchers around the world are already able to program microbes to treat waste water, generate electricity, manufacture jet fuel, create hemoglobin, and fabricate new drugs. What sounds like science fiction to...
-
Video/AnimationCas9: As a Transcriptional ActivatorIn this technical animation, Wyss Institute researchers instruct how they engineered a Cas9 protein to create a powerful and robust tool for activating gene expression. The novel method enables Cas9 to switch a gene from off to on and has the potential to precisely induce on-command expression of any of the countless genes in the...
-
Video/AnimationGene Editing Mechanism of CRISPR-Cas9In this animation, learn how CRISPR-Cas9 gene editing technology can be used to precisely disrupt and modify specific genes. Credit: Wyss Institute at Harvard University.
-
Video/AnimationDesigning Fusion-Protein TherapiesIn this video, watch the new computational model in action as it simulates the behavior of a fusion-protein drug molecule after the targeting protein has attached to a cell. Developed by Wyss researchers, this model helps design more effective biologic drugs while eliminating drug candidates that are prone to causing side effects. Credit: Harvard’s Wyss...
-
Video/AnimationBioinspired Approach to Sepsis TherapyWyss Institute Founding Director Don Ingber, Senior Staff Scientist Michael Super and Technology Development Fellow Joo Kang explain how they engineered the Mannose-binding lectin (MBL) protein to bind to a wide range of sepsis-causing pathogens and then safely remove the pathogens from the bloodstream using a novel microfluidic spleen-like device. Credit: Wyss Institute at Harvard...
-
Video/AnimationBone Marrow-on-a-ChipWyss Institute Founding Director Don Ingber, Postdoctoral Fellow Yu-suke Torisawa, and Researcher Catherine Spina explain how and why a they built bone marrow-on-a-chip, and how they got it to act like whole living marrow and manufacture blood cells. Credit: Wyss Institute at Harvard University
-
Video/AnimationVirus-inspired DNA NanodevicesWyss Institute Core Faculty member William Shih and Technology Development Fellow Steven Perrault explain why DNA nanodevices need protection inside the body, and how a viral-inspired strategy helps protect them. Credit: Wyss Institute at Harvard University
-
Video/AnimationTough GelA team at the Wyss Institute is honing a tough, rubbery hydrogel initially developed at Harvards School of Engineering and Applied Sciences. The gel is 90 percent water, yet it stretches without breaking to more than 20 times its original length and recoils like rubber, the researchers first reported in Nature in 2012. In fact,...
-
Video/AnimationShrinking GelWhen the temperature rises to just below body temperature, this biocompatible gel shrinks dramatically within minutes, bringing tooth-precursor cells (green) closer together. Credit: Basma Hashmi
-
Video/AnimationBioprinting: Building in Blood VesselsBuilding in blood vessels. Then they addressed a big challenge in tissue engineering: embedding 3D vascular networks. They developed a ‘fugitive’ ink that can easily be printed, then suctioned off to create open microchannels that can then be populated with blood-vessel-lining cells to allow blood to flow. Read more: wyss.harvard.edu/viewpressrelease/141 Credit: Wyss Institute at Harvard...
-
Video/AnimationBioprinting: Building with Bio-InksBuilding with bio-inks. Using their custom-built printer, the fugitive ink for the vasculature, and other biological inks containing extracellular matrix and human cells, the researchers printed a 3D tissue construct. Credit: Wyss Institute at Harvard University
-
Video/AnimationBioprinting: Building Intricate StructuresBuilding intricate structures. The team first designed a custom printer that can precisely co-print multiple materials in 3D to create intricate heterogeneous patterns. Credit: Wyss Institute at Harvard University
-
Video/AnimationResearchers mimic pulmonary edema in Lung-on-a-ChipThe Wyss Institute’s human breathing lung-on-a-chip, made using human lung and blood vessel cells, acts much like a lung in a human body. A vacuum re-creates the way the lungs physically expand and contract during breathing. As reported in Science Translational Medicine on November 7, 2012, Wyss researchers have now mimicked a human disease –...
-
Video/AnimationClot-busting nanotherapeuticWyss Core Faculty member Donald E. Ingber describes the clot-busting nanotherapeutic. Credit: Wyss Institute at Harvard University
-
Video/AnimationVibrating Mattress: Preventing Infant ApneaWhat if we could prevent infant apnea? Credit: Wyss Institute at Harvard University
-
Video/AnimationDNA Nanorobot: Cell-Targeted, Payload-DeliveringThis video describes a cell-targeted, payload-delivering DNA nanorobot developed at the Wyss Institute that can trigger targeted therapeutic responses. This novel technology could potentially seek out cancer cells and cause them to self-destruct. Credit: Wyss Institute at Harvard University
-
Video/AnimationIntroduction to Programmable NanoroboticsWhat if we could build programmable nanorobots to attack disease? Credit: Wyss Institute at Harvard University
-
Video/AnimationIntroduction to Implantable Cancer VaccineWhat if we could prevent and treat cancer with a simple vaccine? Credit: Wyss Institute at Harvard University
-
Video/AnimationIntroduction to Sepsis DiagnosticWhat if we could diagnose sepsis in just hours, not days? Wyss Institute researchers discuss their approach to a rapid sepsis diagnostic. Credit: Wyss Institute at Harvard University
-
Video/AnimationLung-on-a-ChipCombining microfabrication techniques with modern tissue engineering, lung-on-a-chip offers a new in vitro approach to drug screening by mimicking the complicated mechanical and biochemical behaviors of a human lung. This extended version of the video includes our findings when we mimicked pulmonary edema on the chip. Credit: Wyss Institute at Harvard University