Menu Search Site

Pop-Up MEMS

A manufacturing technique, inspired by pop-up books and origami, allows the fabrication of microrobots and electromechanical devices for industrial and medical applications

The Pop-Up MEMS manufacturing approach help researchers create at tiny model of the Wright brothers’ bi-plane. Credit: Wyss Institute at Harvard University.

Recent decades have seen rapid development in the manufacture of microelectromechanical systems (MEMS) at the micrometer scale, mostly based on silicon wafer processing techniques, with characteristic length scales of millimeters to nanometers. However, standard MEMS techniques are often inappropriate for producing machines with complex 3D topologies and varied constituent materials at the mesoscale, at sizes between micrometer scales of MEMS and centimeter scales of larger devices that can be manufactured with more traditional methods.

Motivated by these challenges and drawing inspiration from laminated printed circuit board (PCB) manufacturing, Wyss Institute researchers have developed a bulk-machined ‘Pop-Up’ MEMS process for creating mesoscale machines up to several centimeters in dimension.

Our new techniques allow us to use any material including polymers, metals, ceramics, and composites. Along with integrated electronics, this means that we can generate full systems in any three-dimensional shape.

Robert Wood

Sheets of various laser-cut materials are layered and sandwiched together into a thin, flat plate that pops up into the complete electromechanical structure—replacing what used to be a painstaking, slow and manual manufacturing process. The Pop-Up MEMS method creates complex, articulated mechanisms and is also efficient – saving the time it takes to construct several micromachines at once compared to traditional MEMS techniques or manual “nuts-and-bolts” assembly. In addition, ‘Pop-Up’ MEMS machines can incorporate micron scale mechanical features, piezoelectric actuators, integrated circuitry, and a wide variety of materials in true 3D topologies.

Microscale Icosahedron. Credit: Wyss Institute at Harvard University.

Pop-Up MEMS technology is suited to manufacturing mesoscale architectures with potential uses in robotic research and design, and in electronic and medical applications. Pop-up MEMS could enable the mass production of smart minimally invasive surgical tools, novel implantable medical devices, specialized optical systems and a variety of electromechanical devices including complex microrobots on the scale of micrometers to centimeters like the Wyss Institute’s RoboBees. Wyss researchers are currently pursuing the creation of endoscope- and surgical instrument steering mechanisms deploying this manufacturing process.

All fields are available for licensing.

 

To obtain additional information or to learn more about our intellectual property portfolio or licensing opportunities, please contact us.

Get in touch

Close search results
Close menu